84777 (763876)

Файл №763876 84777 (Задача на собственные значения для вырождающегося уравнения смешанного типа)84777 (763876)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Задача на собственные значения для вырождающегося уравнения смешанного типа

Сабитов К.Б., Бибакова С.Л.

1. Постановка задачи. Рассмотрим уравнение:

(1)

где l - комплексный параметр, в области D, ограниченный при

кривой

с концами в точках B (1, 0) и K (0, 1/4), лежащей в первом квадранте, отрезком AK оси OY, где A=(0, 0), и характеристиками AC (

) и CB (

) уравнения (1) при

.

Пусть

Задача Tl. Найти значения параметра и соответствующие им функции

, удовлетворяющие условиям:

(2)

(3)

(4)

(5)

где при

при

Выбор значения k таковым объясняется тем, что для уравнения (1) при доказаны теоремы существования и единственности решения задачи Трикоми [1].

Спектральные задачи для оператора Лаврентьева-Бицадзе были рассмотрены в работах [2-4].

В работах [5-8] изучены спектральные задачи для уравнения (1) с условиями Дирихле. В [5] для уравнения (1) в области эллиптичности построены решения первой краевой задачи и смешанной краевой задачи с помощью биортогональных рядов. В работе [6] уравнение (1) рассматривалось в D, где подобласть D+ ограничена отрезком NB оси y=0 , N=(-1, 0) , и дугой NB: а в работах [7-8] уравнение (1) изучалось в D при

В данной работе найдены в явном виде собственные значения и соответствующие собственные функции, которые отличаются от результатов [6].

2. Построение частных решений в области эллиптичности. В области D+ перейдем к новым переменным

,

В координатах

уравнение (1) примет вид:

где .

Разделяя переменные получим:

(6)

(7)

(8)

(9)

Известно [1], что решением уравнения (6) является функция Бесселя

(10)

Удовлетворяя (10) краевым условиям (7) и (8), имеем:

(11)

Теперь построим общее решение для уравнения (8). Для этого в (8) введем новую переменную Тогда оно примет вид:

(12)

Уравнение (12) является гипергеометрическим уравнением [9, с. 69], и поскольку a не является целым числом, то общее решение уравнения (8) определяется по формуле

(13)

Функция (13) удовлетворяет первому граничному условию из (9). Удовлетворим (13) второму краевому условию из (9).

(14)

На основании равенств [10, с. 112]

имеем уравнение для нахождения неизвестного :

(15)

В силу известных формул

имеем:

где

Тогда с учетом того, что и

равенство (15) примет вид:

(16)

Таким образом, в области D+ найдены частные решения уравнения (1), удовлетворяющие краевому условию (3):

(17)

3. Построение частных решений в области гиперболичности. В уравнение (1) в области D- сделаем замену переменных Тогда в координатах

уравнение (1) примет вид:

Разделив переменные получим:

(18)

(19)

(20)

(21)

Решением уравнения (18) , удовлетворяющего условиям (19), является функция

(22)

Уравнение (20) так же, как и уравнение (12), является гипергеометрическим уравнением с аргументом . Переходя к аргументу

, построим его общее решение:

(23)

Если то функция (23) удовлетворяет граничным условиям (21). Тогда решением уравнения (20), удовлетворяющего условиям (21), будет:

Таким образом, в области D- найдены частные решения уравнения (1), удовлетворяющие граничному условию (4):

(24)

4. Построение собственных функций задачи Tl. Для нахождения собственных значений и собственных функций задачи Tl , построенную систему функций (17) и (24) удовлетворим условиям склеивания (2) и (5).

Из (17) и (24) вычислим:

Приравнивая функции

получим систему

из которой находим коэффициенты и

:

(25)

Найденные значения ,

подставим в равенство (16) и решим его относительно g. Потребуем, чтобы

,

. Тогда получим:

(27)

Поскольку , то уравнение (27) имеет место, если

Рассмотрим по отдельности случаи и

При уравнение (27) имеет решения

или

, где

. С учетом того, что

и

, решением (27) будет

При , решением (27) является

или

, где

. С учетом тех же условий получим:

По формулам (25) и (26) находим и

при найденных

:

где

Из теории бесселевых функций известно [10], что при функция

имеет только вещественные нули. Тогда, обозначая через

--m-ый корень уравнения (11), находим собственные значения задачи Tl:

Таким образом, построена система собственных функций задачи Tl:

Список литературы

Смирнов М.М. Уравнения смешанного типа. М., 1985.

Пономарев С.М. Спектральная теория основной краевой задачи для уравнения смешанного типа Лавретьева-Бицадзе. Автореферат диссертации … д-ра ф.-м. наук. М.: МГУ, 1981.

Моисеев Е.И. Уравнение смешанного типа со спектральным параметром. М.: МГУ, 1998.

Сабитов К.Б., Тихомиров В.В. О построении собственных значений и функций одной газодинамической задачи Франкеля // Математическое моделирование. 1990. Т. 2. № 10. С. 100-109.

Моисеев Е.И. о решении вырождающихся уравнений с помощью биортогональных рядов // Дифференц. уравнения. 1991. Т. 27. № 1. С. 94-103.

Мамедов Я.Н. О некоторых задачах на собственные значения для уравнения смешанного типа // Дифференц. уравнения. 1990. Т. 26. № 1. С. 163-168.

Сабитов К.Б., Вагапов В.З. О построении частных решений вырождающихся уравнений смешанного типа // Комплексный анализ, дифференц. уравнения и смежные вопросы: Тр. Международ. науч. конф. Уфа, 1996. С. 99-106

Вагапов В.З. построение частных решений одного уравнения смешанного типа // Тр. Всеросс. науч. конф. «Физика конденсированного состояния». Стерлитамак, 1997. Т. 1. С. 26-30.

Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. М.: Наука, 1973.

Ватсон Г.Н. Теория бесселевых функций. 1. М., 1949.

Для подготовки данной работы были использованы материалы с сайта http://www.bashedu.ru

Характеристики

Тип файла
Документ
Размер
289,46 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов статьи

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6556
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее