84761 (763860)

Файл №763860 84761 (Замкнутые инвариантные пространства функций на кватернионных сферах)84761 (763860)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Замкнутые инвариантные пространства функций на кватернионных сферах

И.А. Латыпов, Омский государственный университет, кафедра математического анализа,

Кватернионную сферу S4n-1 естественно рассматривать как однородное пространство группы Sp(n), действие задается левыми сдвигами. В связи с этим возникает задача описания замкнутых Sp(n)-инвариантных подпространств L p при и пространства непрерывных функций на сфере S4n-1, решенная в данной работе.

1. Предварительные сведения из теории алгебр Ли.

Группу Sp(n,C) зададим как множество матриц, удовлетворяющих условию StJS=J, где , 1n - единичная матрица размером . Дифференцированием получим соотношение XtJ+JX=0 для элементов алгебры Ли sp(n,C), а в блочном виде B=Bt, C=Ct. Выберем базис :

Подалгебра диагональных матриц будет картановской, - корневая система, где . Неприводимое представление алгебры Ли характеризуется своим старшим весом, лежащим в доминантной камере Вейля и имеющим целочисленные координаты. Размерность неприводимого представления, соответствующего старшему весу , вычисляется по формуле

где - полусумма положительных корней. Порядок будем считать лексикографическим. Более подробную информацию об алгебрах Ли можно найти в [2].

2. Представления алгебры Ли sp(n,C) в пространствах H(p,q).

Введем обозначения: Ok- пространство однородных полиномов степени однородности k, O(p,q) - пространство однородных полиномов степени однородности p и q по переменным z и соответственно (однородность понимается в вещественном смысле), Hk - пространство гармонических полиномов из Ok, H(p,q) - пространство гармонических полиномов из O(p,q).

Рассмотрим сначала алгебру u(n). Выберем ее базис над R в виде

Пусть - представление группы U(n) в Ok левыми сдвигами, . Дифференцированием функции s(exp(-tX)z) по t при t=0 получаем представление алгебры Ли u(n): где , , умножение - скалярное.

Задавая в u(n)C базис , получаем

Применим полученные формулы для представления алгебры sp(n,C)=sp(n)C:

где wi=zn+i.

H(p,q) - неприводимые компоненты представления u(n) и u(n)C, см. [4]. Значит, неприводимыми компонентами представления sp(n) и sp(n,C) будут некоторые подпространства H(p,q). Введем операторы ,

Проверка на базисных элементах дает

Предложение 1. Операторы L1 и L2 являются сплетающими для некоторых пар неприводимых представлений.

Найдем теперь старшие векторы из H(p,q), соответствующие неприводимым представлениям sp(n,C), они должны зануляться положительными операторами Dbij для всех i и j и Daij при i>j. Прямой проверкой получается

Предложение 2. При n>1 многочлен - старший вектор неприводимого представления sp(n,C) со старшим весом

Теорема 1. При n=1 H(p,q) неприводимо, а при n>1 .

Доказательство . Размерность H(p,q) равна

идею доказательства см. в [1].

Если n=1, вектор порождает неприводимое подпространство в H(p,q). Поскольку Da11S=(p+q)S, этот вектор соответствует старшему весу . Тогда 2x1 - единственный положительный корень, то есть H(p,q) неприводимо.

Пусть n>1. Осталось теперь показать, что

Эту формулу можно доказать по индукции, индуктивный переход делается от пары (p,q) к паре (p+1,q-1), а , что доказывает теорему.

Обозначим через инвариантную относительно вращений положительную борелевскую меру на S4n-1, для которой .

Следствие 1. Пространство является прямой суммой попарно ортогональных пространств P(p,q,r).

Следствие 2. Справедливы утверждения: a) В P(p1,q1,r1) и P(p2,q2,r2) при n>1 реализуются эквивалентные представления тогда и только тогда, когда p1+q1=p2+q2 и r1=r2.

b) При n=1 в H(p1,q2) и H(p2,q2) реализуются эквивалентные представления тогда и только тогда, когда p1+q1=p2+q2.

Пусть Ws,r и Ws - пространства линейных комбинаций векторов и соответственно с комплексными коэффициентами, . Введем также пространства и при n>1.

Следствие 3. Ws,r и Ws - пространства старших векторов неприводимых представлений со старшим весом и s соответственно. Сплетающие операторы неприводимых представлений можно выразить как многочлены от операторов L1 и L2.

Более подробные сведения из теории представлений можно найти, например, в [3].

3. Инвариантные пространства функций на S4n-1.

Пространство Y на сфере S4n-1 назовем инвариантным, если для всех f из Y и всех g из Sp(n) f*g лежит в Y. Неприводимость представления группы Ли Sp(n) эквивалентна неприводимости представления комплексификации ее алгебры Ли sp(n,C), поэтому пространства P(p,q,r) и H(p,q) при n=1 инвариантны.

Если Y - инвариантное замкнутое подпространство , то также инвариантно и ортогональная проекция коммутирует с Sp(n). Это верно также для ортогональных проекций и .

Когда в пространствах V и W реализуются неприводимые представления, пространство сплетающих операторов из V в W либо одномерно (если представления эквивалентны), либо пусто. Отсюда, из следствия 2 теоремы 1 и предложения 1 вытекает

Предложение 3. Пусть n>1 и линейное отображение коммутирует с Sp(n). Тогда

1) если или , то T=0.

2) если r1=r2 и p1+q1=p2+q2, то найдется константа C, такая что при T=CL2p1-p2, при T=CL1p2-p1.

Обозначим через неприводимое инвариантное пространство со старшим вектором , а через -замыкание пространства Y.

Теорема 2. Если Y - замкнутое инвариантное подпространство , то , .

Доказательство. Пусть n>1 и тройка (p,q,r) такая, что . Так как Y инвариантно и коммутирует с Sp(n), то - нетривиальное инвариантное подпространство P(p,q,r). Значит, Пусть и Y1 - ортогональное дополнение к Y0 в Y. Тогда Y0 инвариантно как ядро оператора, коммутирующего с Sp(n), значит Y1 также инвариантно. Более того, - изоморфизм, обратный к которому обозначим

Выберем другую тройку (p',q',r') и рассмотрим отображение Оно коммутирует с Sp(n) и переводит P(p,q,r) в P(p',q',r'). Значит, по предложению 3, для всех (p',q',r'), таких что

Тогда Y1 - подпространство . Рассмотрим и содержащее его минимальное инвариантное пространство, оно совпадает с Y1.

Пользуясь теоремой 1, получаем нужный результат. Случай n=1 доказывается аналогично.

Пусть далее X обозначает одно из пространств , и C(S4n-1). Как следствие теоремы об общем виде линейного ограниченного функционала на получается

Предложение 4. При n>1 для всех троек (p,q,r) и всех точек z на S4n-1 найдется полином Kz из P(p,q,r) такой, что для любой функции f из

Для всех пар (p,q) и всех точек z на S3 найдется полином Kz из H(p,q) такой, что для любой функции f из

Следствие. Операторы и продолжаются до непрерывных операторов на

Далее потребуются следующие две леммы, которые приводятся без доказательства.

Лемма 1. Если Y - замкнутое инвариантное подпространство X, то плотно в Y.

Лемма 2. Если Y инвариантное подпространство C(S4n-1), непрерывная функция g не лежит в равномерном замыкании Y, то g не лежит и в L2-замыкании Y.

Докажем основной результат данной работы.

Теорема 3. Если Y - инвариантное подпространство X и - из теоремы 2, то .

Доказательство. По следствию из предложения 4 и определены на . Пусть - L2-замыкание Так как -замкнуто, то плотно в Y по лемме 1 и равномерно замкнуто. По лемме 2 Так как и X-непрерывны и L2-непрерывны, то и

Поэтому по теореме 2 Так как лежит в C(S4n-1), то, применяя лемму 2, получаем: = равномерное замыкание

Отсюда и из того, что X-плотно в Y и вытекает утверждение теоремы.

В заключение несколько слов об инвариантных алгебрах на кватернионных сферах. Унитарно-инвариантные алгебры были описаны в [4], их пространства максимальных идеалов были найдены в работе [5]. В симплектическом случае дело существенно усложняется из-за кратности представлений в пространствах однородных полиномов. Однозначного разложения на неприводимые компоненты не получается, и, как следствие, мера Хаара не будет мультипликативной. Уже при n=1 возникает большое число инвариантных алгебр, не инвариантных относительно действия унитарной группы.

Список литературы

Виленкин Н. Я. Специальные функции и теория представлений групп. М.: Наука, 1965.

Гото М., Гроссханс Ф. Полупростые алгебры Ли. М.: Мир, 1981.

Наймарк М. А. Теория представлений групп. М.: Наука, 1976.

Рудин У. Теория функций в единичном шаре из Cn. М.: Мир, 1984.

Kane J. Maximal ideal spaces of U-algebras // Illinois J. Math. V.27. 1983. N.1. P.1-13.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/

Характеристики

Тип файла
Документ
Размер
302,22 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов статьи

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6572
Авторов
на СтудИзбе
297
Средний доход
с одного платного файла
Обучение Подробнее