84739 (763846), страница 2

Файл №763846 84739 (Симметрия и принципы инвариантности в физике) 2 страница84739 (763846) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В случае существования нескольких линейно независимых волновых функций для одного и того же энергетического уровня говорят о вырождении этого уровня, а число независимых волновых функций (состояний), принадлежащих этому уровню, называют кратностью вырождения. Если уравнение (2) инвариантно относительно преобразований некоторой группы симметрии G H , то волновые функции, являющиеся решениями этого уравнения и принадлежащие одному энергетическому уровню, будут обязательно составлять базис неприводимого представления группы G H . Это утверждение составляет содержание теоремы Вигнера, имеющей, правда, оговорку о случайных вырождениях, на которой мы останавливаться не будем.

Отсюда следует, что энергетические уровни квантовой системы можно классифицировать по неприводимым представлениям группы симметрии. Иными словами, симметрия вызывает объединение квантовых состояний в группы (мультиплеты), относящиеся к энергетическим уровням, каждый из которых характеризуется неприводимым представлением группы симметрии.

Использование представлений групп симметрии позволяет очень просто устанавливать так называемые правила отбора для квантовых переходов между энергетическими уровнями под действием разного рода нестационарных возмущений (напр., под действием света), что очень важно для оптической спектроскопии. Кроме того, применение представлений групп симметрии существенно облегчает рассмотрение влияний стационарных внешних воздействий (электрических, магнитных полей, механических напряжений и т.д.), к примеру, на оптические спектры квантовых систем. Дело в том, что "включение" внешнего воздействия изменяет симметрию задачи (обычно симметрия понижается от группы G H до одной из ее подгрупп G' ). Между тем, представление Г, неприводимое в группе GH , может стать приводимым в подгруппе G':

(3)

Г=∑j cjГj ,

что означает расщепление энергетического уровня типа Г на ряд подуровней, характеризуемых неприводимыми представлениями Г j группы G'. Это влечет за собой расщепление соответствующих линий, полос в оптическом спектре (так называемые эффекты Штарка, Зеемана, пьезоспектроскопические явления и т.д.). Проводя разложение (3), мы сразу узнаем, на сколько подуровней и какого типа расщепится данный уровень. Соответствующие разложения легко проводятся с использованием таблиц характеров неприводимых представлений групп симметрии (см. [7-9]).

3. Негеометрические виды симметрии

Физические законы могут обладать свойствами симметрии иного рода, нежели рассмотренные выше. Например, в квантовой теории важную роль играет так называемая перестановочная симметрия, т.е. инвариантность уравнения Шредингера относительно перестановок одинаковых частиц 4 . Важнейшим следствием перестановочной симметрии является существование двух классов частиц: бозонов и фермионов, существенно различающихся по своим свойствам. К первым относятся частицы с целым спином (в единицах h=h/(2) , где h- постоянная Планка), а ко вторым - с полуцелым.

Волновые функции двух состояний системы частиц, различающихся перестановкой P одинаковых частиц, физически эквивалентны, т.е. функции  и P  могут отличаться только несущественным фазовым множителем:

(4)

P=exp(i)  .

Отсюда, с одной стороны, P2=exp(2i) , а с другой - P2=1, т.е. exp(2i)=1. Тогда exp(i)=1, и (4) запишется:

P =  .

Следовательно, волновая функция системы одинаковых частиц должна быть симметричной P =+  (бозоны) или антисимметричной P=- (фермионы).

Выдающийся швейцарский физик-теоретик Вольфганг Паули (1900-1958) установил связь перестановочной симметрии со спином частиц: частицы с целым спином - бозоны, а с полуцелым - фермионы. Он же показал, что фермионы должны подчиняться принципу запрета (широко известному сейчас как принцип Паули): два фермиона не могут находиться в одном и том же состоянии. Очевидно, что перестановка фермионов в одном и том же состоянии не меняла бы волновую функцию P= , но, с другой стороны, ввиду антисимметричности волновой функции системы фермионов P=- . Следовательно, =-=0, т.е. такие состояния не могут существовать.

Принцип Паули, как известно, служит ключом к объяснению периодического закона Д.И. Менделеева. Если бы не выполнялся принцип Паули, то все электроны любого атома перешли бы в наинизшее по энергии 1s-состояние, что привело бы к потере того разнообразия химических свойств атомов, которое наблюдается в природе. Это как нельзя лучше иллюстрирует важное значение перестановочной симметрии.

К не менее значимому виду симметрии можно отнести калибровочную симметрию уравнений электродинамики и релятивистской квантовой механики (уравнений Дирака). Суть ее заключается в следующем: если умножение волновой функции на постоянный фазовый множитель exp(i) не меняет уравнение Дирака, то умножение ее на переменный фазовый множитель exp(i(x,y,z,t)) (так называемое локальное калибровочное преобразование) приводит к его изменению. В уравнении появляются дополнительные слагаемые, происходящие от дифференцирования (x,y,z,t) по координатам и времени. Если, однако, постулировать принцип локальной калибровочной инвариантности, то можно скомпенсировать дополнительные слагаемые, вводя взаимодействие с некоторым векторным полем. Последнее по своим свойствам оказывается тождественным электромагнитному полю, которое подчиняется уравнениям Дж. Максвелла. Получается, что уравнения Максвелла можно вывести из принципа локальной калибровочной симметрии! Поэтому электромагнитное поле можно назвать калибровочным полем для электронов. Кванты этого поля (фотоны) являются переносчиками электромагнитного взаимодействия между электронами. Они, как известно, имеют спин, равный 1 (в единицах h ) и массу покоя, равную 0. Эти два свойства присущи любым калибровочным полям (см. ниже).

Китайский физик Ч.Янг и американец Р. Миллс попытались распространить принцип локальной калибровочной инвариантности на сильные взаимодействия. Для сильных взаимодействий адронов5 еще в 30-х гг. была установлена глобальная изотопическая инвариантность, основанием для которой послужила возможность объединить часть адронов в семейства "похожих" частиц. Частицы каждого семейства имеют одинаковые внутренние характеристики: спин, четность, барионный заряд, странность, очарование, красоту (исключая электрический заряд) и примерно одинаковые массы. Такие семейства адронов называют изомультиплеты. Наиболее известные из них - изодублет барионов: протон-нейтрон n,p и изотриплет мезонов: +,o,- .

Если вспомнить о релятивистской связи между энергией и массой E=mc2 , то частицы одинаковой массы, сходные по своим свойствам с точки зрения сильных взаимодействий, можно рассматривать как одну частицу, находящуюся в разных квантовых состояниях (но с одной и той же энергией). Следовательно, по теореме Вигнера, эти частицы можно отнести к определенному неприводимому представлению группы симметрии сильных взаимодействий. Проблема состоит в том, чтобы правильно определить эту группу симметрии.

Подобно тому, как для атома из двух базисных состояний спина s=1/2 с проекцией спина на выделенное направление ms=1/2 , можно путем векторного сложения спинов построить спиновые мультиплеты с квантовым числом полного спина S=0,1/2,1,3/2,2...(соответственно с мультиплетностью 2S+1=1,2,3,4,5...), возможные изомультиплеты нестранных адронов могут быть найдены из двух базисных состояний u и d с проекциями изоспина mT=1/2 соответственно. Эти изомультиплеты характеризуются квантовым числом полного изоспина T и его (2T+1)-й проекциями mT= =T,-T+1,-T+2...+T. С математической точки зрения, состояния ms=1/2, как и состояния (u, d), образуют базис так называемого фундаментального представления d(1/2) группы SU(2)6 , и последовательное перемножение d(1/2) x d(1/2) x...x d(1/2) с последующим разложением на неприводимые представления D(s) (или T ) дает значения (или ) в мультиплетах.

Если в случае одной волновой функции  глобальное калибровочное преобразование заключается в простом умножении на экспоненциальный множитель '=exp(i) , то для двух состояний глобальное калибровочное преобразование имеет вид:

(5)

где матрица коэффициентов aik обладает специальными свойствами7 . Набор этих матриц совпадает с известными из теории спиноров матрицами D(1/2)(), описывающими преобразования спиновых функций ( -1/2,+1/2 ) при вращении системы координат, задаваемом углами Эйлера  . Поэтому глобальное калибровочное преобразование (5) можно интерпретировать как вращение в некотором внутреннем изоспиновом пространстве.

Однако попытка Ч. Янга и Р.Миллса рассматривать адроны как состоящие из двух фундаментальных частиц u и d не удалась. Двух базисных состояний для построения всех наблюдаемых адронов оказалось недостаточно. Поэтому американские физики М.Гелл-Ман и У.Нейман обратились к группе SU(3) унитарных преобразований трех фундаментальных состояний u,d,s. Эти состояния и сопряженные им u, s, d М.Гелл-Ман и Дж.Цвейг интерпретировали как действительно элементарные частицы-кварки и антикварки соответственно. Если приписать кваркам дробные электрические заряды ( +2/3,-1/3,-1/3 для u,d,s соответственно, и противоположные по знакам для антикварков u, s, d), а также определенные значения спина , странности, барионного заряда, изоспина и его проекции, то из них можно построить большинство из известных адронов.

Группа SU(3) кроме трехмерных неприводимых фундаментальных представлений имеет ряд неприводимых представлений с размерностями 1,6,8,10... Это вполне согласуется с существованием синглетов, октетов и декуплетов частиц-адронов с близкими массами и одинаковыми спинами (в пределах каждого мультиплета) 8 . Некоторый разброс значений масс в мультиплетах, как выяснилось позднее, связан с тем, что симметрия SU(3) f 9 на самом деле является приближенной.

В плане классификации адронов успех гипотезы SU(3) f и кварков был несомненным. Особенно большое впечатление произвело теоретическое предсказание М.Гелл-Маном бариона -, который заполнил пустое место в одном из декуплетов. Гелл-Ман предсказал также примерную массу этой частицы - 1675 МэВ (в энергетических единицах) и странность S= -2. Спустя полтора года эта частица действительно была обнаружена экспериментально с массой 1672 МэВ и странностью S= -2. С этого момента классификация адронов на основе приближенной унитарной симметрии SU(3) f стала общепризнанной, а М.Гелл-Ман в 1969 г. был удостоен Нобелевской премии по физике.

Однако наряду с успехами унитарной классификации адронов возник ряд новых проблем, например, существование некоторых барионов ++=( u,u,u); -=( d,d,d); -=( s,s,s), кварковый состав которых (в частности, барионов , про-тиворечил принципу Паули, согласно которому в одном и том же состоянии могут находиться не более двух фермионов с противоположными спинами (см. выше). Другая трудность связана с неудачами попыток обнаружения свободных кварков.

Для преодоления первой трудности пришлось ввести еще одну квантовую характеристику кварков, которая может принимать три значения. Эта величина получила название цветовой заряд (или просто цвет), а три ее значения условно назвали красным, желтым и синим оттенками. Цвет как фундаментальная характеристика кварков был введен российскими учеными Н.Боголюбовым, Б.Струминским и А.Тавхелидзе, а также, независимо от них, - Й.Намбу (США) в 1965 г. Три кварка, входящие в приведенные выше частицы ++; -; -, имеют разный цветовой заряд, т.е. находятся в разных состояниях , и потому не нарушается принцип Паули. Комбинация ( q r,q y,q b ) составляет "бесцветный" синглет. Антикварки имеют антикрасный, антижелтый или антисиний цвета. Барионы состоят из трех кварков разного цвета. Мезоны, состоящие из кварка и одноименного антикварка, также "бесцветны", как и барионы.

Введение цвета привело к открытию еще одного вида симметрии для сильного взаимодействия описываемой вновь группой SU(3) С . Однако в этом случае роль трех фундаментальных состояний играют три цвета, что и отражено индексом (от "color" - цвет). В отличие от SU(3) f симметрия SU(3) c является точной. Последняя включает глобальные калибровочные (унитарные) преобразования цветовых состояний при фиксированных ароматах кварков. Придание статуса локальных этим пробразованиям приводит к калибровочным полям, описывающим сильные взаимодействия между кварками. Эти поля получили название глюонных (от "glue" - клей).

Итак, подобно тому, как электрические заряды являются источниками электромагнитного поля, цветовые заряды порождают глюонное поле. Если переносчиками первого являются фотоны, то второго - глюоны. И те и другие электрически нейтральны и безмассовы, но глюоны обладают цветовым зарядом. Из свойств группы симметрии SU(3) c вытекает существование восьми типов глюонов. Наличие цветовых зарядов у них придает сильным взаимодействиям совершенно необычные свойства, проявляющиеся , в частности, в том, что сила взаимодействия между кварками убывает при уменьшении и растет при увеличении расстояния между ними 10 . Это, по-видимому, является причиной "пленения" кварков внутри адронов, что и объясняет неудачи попыток обнаружения свободных кварков.

Теория сильных взаимодействий, опирающаяся на представление о цветовых зарядах, получила название квантовой хромодинамики. Эта теория практически завершена для малых расстояний между кварками, но для больших расстояний еще имеются трудности.

Тем не менее применение принципов глобальной и локальной унитарной симметрии способствовало существенному продвижению в области классификации адронов и описания сильных взаимодействий. Вместе с тем имеется еще ряд проблем на этом пути. Так, для классификации и описания взаимодействий наиболее тяжелых и короткоживущих адронов (так называемых резонансов) потребовалось ввести еще три кварка, получивших названия c,b,t. Вместе с лептонами кварки образуют три поколения элементарных частиц:

1

2

3

u

c

t

u, d, c, s, t, b- кварки,

-нейтрино

e-электрон

-мезоны

d

s

b

e





e

(аналогично следует разбить и античастицы). Имеется теоретическое обоснование того, что число поколений должно исчерпываться тремя. Эти повторения поколений представляют собой главную загадку физики элементарных частиц. Возможно, они вновь указывают на составной характер этих частиц и на новую, более глубокую симметрию.

Характеристики

Тип файла
Документ
Размер
165,56 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее