63871 (762965)
Текст из файла
Современные радиолокаторы можно условно разделить условно на два класса: радиолокаторы в которых используются видеоимпульсные сигналы и радиолокаторы с использованием гармонических модулированных или немодулированных сигналов. Характерной особенностью радиолокаторов второго типа является возможность получать изображения малозаглубленных предметов непосредственно, без какой либо последующей обработки [1]. Изображения получаются методом сканирования приемо-передающим антенным блоком по поверхности раздела двух сред. Получаемые таким образом изображения формируются в соответствии с принципом формирования голограммы [1,2] поскольку в формировании получаемого изображения участвуют два сигнала – опорный и предметный. Опорный сигнал получается в результате неизбежной электродинамической связи между передающей и приемной антенной, расположенных в одном антенном блоке, как это имеет место в радиолокаторе типа «Раскан» [1], либо подмешиванием опорного сигнала из задающего генератора в приемник на основной или промежуточной частотах. Предметный сигнал получается в результате отражения от объектов, находящихся под поверхностью. Опорный сигнал является аналогом опорной волны при записи оптических голограмм, а сигнал, отраженный от заглубленных предметов, является аналогом предметной волны, отраженной от голографируемого объекта.
Для восстановления изображения заглубленного предмета, которым считается представление о геометрическом расположении интерферирующих источников, дающих интерференционную картину в виде голограммы, исследователями предлагаются перечисляемые ниже методы.
В работе [1] предлагается метод, основанный на восстановлении голограммы методом апертурного синтеза. Данный метод основан на известном принципе обработки данных радиолокаторов с синтезированием апертуры, когда мера отражательных характеристик данной точки зондируемого объекта получается в результате свертки принимаемого сигнала с ожидаемым опорным сигналом из этой же точки [3]. Непосредственное применение данного метода к подповерхностной радиолокации наталкивается на трудности, связанные с тем, что амплитуда опорного сигнала зависит от дальности, на которой восстанавливается изображение, приводя к тому, что результирующая свертка может иметь большее по модулю значение для меньшей опорной дальности, чем действительная дальность до зондируемого предмета. Для преодоления этого недостатка в работе [1] используется нормировка используемого опорного сигнала по энергии. Отсутствие априорной информации об изменении фазы при отражении от заглубленного предмета приводит к ошибкам данного метода, которые выражаются в том, что глубина фокусировки изображения зависит от задаваемой фазы для опорного сигнала.
В работе [4] для восстановления изображений подповерхностного зондирования предлагается метод миграции. В этом методе изображение точечного рассеивателя получается в результате вычисления корреляции распространяемого обратно в среду рассеянного поля и поля, распространяющегося в среду непосредственно от излучателя, возбуждающего электромагнитные волны. В данном методе рассматривается ЛЧМ зондирующий сигнал и для рассматриваемого типа радиолокаторов непосредственно неприменим.
Ряд работ посвящен решению обратной задачи с использованием линеаризации интегрального уравнения Липпмана-Швингера [5,6]. В работе [5] для восстановления изображения предметов, скрытых под одеждой человека, по результатам радиолокационных данных голографического типа с использованием многочастотного сигнала предлагается метод, основанный на линеаризации интегрального уравнения Липпмана-Швингера с использованием приближения слабого рассеяния (приближение Борна). Данный метод обладает значительной вычислительной трудностью, хотя и допускает возможность дальнейшей оптимизации вычислений с использованием специализированных сигнальных процессоров и предварительным вычислением интерполяционных матриц.
Ряд исследований посвящен разработке методов, которые основаны на так называемом алгоритме обращения времени [7,8], смысл которых заключается в том, что принимаемый сигнал, распространяемый обратно в среду, фокусируется вблизи места расположения предмета. В работе [7] для фокусировки по дальности используются когерентная компонента сигнала с линейной частотной модуляцией, а для фокусировки изображения в перпендикулярной плоскости используются статистические моменты высших порядков. Особенностью такого метода является наблюдаемый эффект сверхразрешения (super resolution), который заключается в том, что наличие укрывающей среды с многократным рассеянием приводит к лучшей фокусировке изображения, чем в условиях, когда зондирование осуществляется в свободном пространстве.
Для сканирующего радиолокатора типа «Раскан», использующего немодулированные гармонические сигналы на нескольких частотах, желательно разработать метод, способный работать в реальном режиме времени, для оперативной классификации изображений оператором. При этом желательно, чтобы аппаратная модификация самого радиолокатора была незначительной. Существующие методы восстановления изображений не могут непосредственно использоваться для решения этой задачи в виду их значительной вычислительной трудности, либо из-за того, что потребуют существенной модификации радиолокатора.
Для решения этой проблемы в статье рассмотрен метод построения изображений по данным подповерхностного голографического зондирования с использованием метода обращения волнового фронта, который существует для восстановления оптических голограмм [9]. Описание данного метода с использованием оптических методов обработки информации приводится в работе [2]. Существующий на сегодня уровень развития вычислительной техники позволяет проделать процедуру восстановления голограммы численно без привлечения оптического метода обработки информации, который заключался бы в изготовлении оптического транспаранта по данным радиоголографического зондирования и последующего восстановления оптической голограммы с использованием когерентных источников излучения оптического диапазона. Численная реализация данного метода с использованием спектрального метода может решить данную задачу в реальном масштабе времени, поскольку такая обработка сигнала допускает быструю реализацию метода с использованием быстрого алгоритма преобразования Фурье. Таким образом, задачами данной статьи являются разработка модели регистрируемого радиолокатором сигнала и метода восстановления изображения заглубленного предмета по регистрируемым на поверхности раздела сигналам.
Комплексная амплитуда поля апертурной антенны, создаваемая в нижнем полупространстве, характеризуемом комплексной диэлектрической проницаемостью
Equation Section 3Рассмотрим апертуру антенны находящейся над полупространством , заполненным веществом, имеющим комплексную диэлектрическую проницаемость
, как показано на рис. 1. Антенна располагается так, что координаты центра ее апертуры в системе координат
равны
. Система координат, связанная с центром апертуры и лежащая в плоскости
, обозначена как
. Найдем комплексную амплитуду поля, создаваемую излучающей антенной в точке
, лежащей в нижнем полупространстве.
Пусть распределение комплексной амплитуды поля на апертуре антенны в декартовой системе координат с началом в центре апертуры. Тогда спектр плоских волн распределения комплексной амплитуды по апертуре антенны в системе координат
будет
.
Знак «+» в обозначении спектра плоских волн означает, что спектр задан в плоскости . Оговорим сразу, что для прямого и обратного преобразования Фурье будем использовать пару
где третье выражение будем называть преобразованием Фурье, а второе – обратным преобразованием.
Каждая плоская волна, распространяющаяся в направлении, задаваемом парой и имеющая комплексную амплитуду
согласно (1) после прохождения плоскости
трансформируется следующим образом
, 3\* MERGEFORMAT ()
где – френелевский коэффициент прохождения плоской волны, характеризуемой парой
, при распространении вниз.
Решая уравнение Гельмгольца для однородного пространства, характеризуемого волновым числом , которое в общем случае может быть комплексным, можно получить соотношение, связывающее спектры плоских волн в параллельных плоскостях. Соответствующее соотношение в обозначениях рис. 1 будет иметь вид
. 4\* MERGEFORMAT ()
Зная спектр плоских волн в произвольной плоскости , можно вычислить соответствующую комплексную амплитуду поля с помощью преобразования Фурье
.5\* MERGEFORMAT ()
Делая замену переменных ,
в выражении (1) получаем
,6\* MERGEFORMAT ()
в котором
7\* MERGEFORMAT ()
– преобразование Фурье от распределения комплексной амплитуды по апертуре излучающей антенны.
Подставляя (1), (3) и (4) в выражение (5), получим
8\* MERGEFORMAT ()
Выражение (8) позволяет по известному распределению комплексной амплитуды по апертуре излучающей антенны находить комплексную амплитуду в нижнем полупространстве, заполненном однородным веществом, имеющим комплексную диэлектрическую проницаемость .
Комплексная амплитуда поля точечного излучателя, находящегося в нижнем полупространстве, принимаемая антенной
Рассмотрим точечный отражатель, расположенный в нижнем полупространстве и имеющий координаты . Будем отраженное от него поле в плоскости
описывать функцией
,9\* MERGEFORMAT ()
где задается выражением (8).
Спектр плоских волн для распределения комплексной амплитуды (9), вычисленный с использованием (2) будет иметь вид
.10\* MERGEFORMAT ()
Распространяясь до плоскости , спектр трансформируется согласно
.11\* MERGEFORMAT ()
После прохождения границы раздела, каждая плоская волна должна быть умножена на коэффициент прохождения Френеля при распространении снизу вверх, таким образом, что спектр плоских волн в плоскости принимает вид
,12\* MERGEFORMAT ()
где – коэффициент прохождения Френеля для плоской волны, характеризуемой парой
.
Распределение комплексной амплитуды поля в плоскости будет находиться как обратное преобразование Фурье от спектра, задаваемого выражением (12)
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.