124444 (756748)

Файл №756748 124444 (Теплоизоляция в криогенной технике)124444 (756748)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Министерство образования Российской Федерации

Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий

Кафедра криогенной техники

Доклад

Теплоизоляция в криогенной технике

Выполнила: Григорьева О.А., гр. 432

Санкт-Петербург 2008

Введение

Теплоизоляция в технике низких температур защищает аппаратуру от притока тепла из окружающей среды. Требования к эффективности теплоизоляции низкотемпературного оборудования возрастают по мере понижения температуры, так как при этом, с одной стороны, увеличивается теплоприток через изоляцию, т. е, потери холода и, с другой стороны, резко возрастает стоимость потерь холода.

Кроме того, теплота парообразования различных жидкостей, отнесенная к единице объема, тем меньше, чем ниже их температуры кипения. Следовательно, небольшое количество тепла вызывает испарение сравнительно большого количества сжиженного газа с низкой температурой кипения. Отсюда ясно, почему к теплоизоляции для низких температур предъявляются особенно высокие требования по уменьшению тепловых потоков через нее. Эти требования тем выше, чем меньше размеры изолируемого оборудования, т. е. больше его удельная поверхность.

Основным требованием к теплоизоляции, применяемой в криогенной технике, является, как это ясно из изложенного, минимальная величина коэффициента теплопроводности. Коэффициент теплопроводности некоторых изоляционных материалов, применяемых при низких температурах, лишь в 1,5—2 раза больше теплопроводности спокойного воздуха, а аэрогель кремниевой кислоты имеет даже более низкий, чем у воздуха коэффициент теплопроводности.

Еще на заре развития криогенной техники исследователи столкнулись с невозможностью сколько-нибудь длительного хранения небольших количеств жидкого воздуха в сосудах с обычной (насыпной) изоляцией. Решение проблемы впервые нашел д'Арсонваль, изготовивший в 1887 г. цилиндрические стеклянные сосуды с двойными стенками, из пространства между которыми был откачан воздух, т. е. сосуды с вакуумной изоляцией. При создании в изоляционной полости достаточно высокого вакуума перенос тепла теплопроводностью газа практически исключается, и приток тепла из окружающей среды осуществляется, в основном, излучением. Заслуга значительного усовершенствования сосудов с вакуумной изоляцией принадлежит Дж. Дьюару, который разработал в 1893 г. способ уменьшения переноса тепла излучением путем серебрения стеклянных стенок сосуда, Дьюар предложил также использовать адсорбент (активированный уголь) для улучшения и длительного сохранения вакуума, что позволило изготовлять сосуды из металлов, выделяющих в вакууме большое количество газов по сравнению со стеклом. Сосуды с вакуумной изоляцией обычно называют «сосудами Дьюара», а иногда и просто «дьюарами;». Они широко применяются и в настоящее время.

В 1910 г. польский ученый М. Смолуховский опубликовал результаты своих работ по теплопередаче через порошки в условиях вакуума. Он установил, что коэффициент теплопроводности порошков быстро снижается при уменьшении давления газа. Поток тепла через пространство, заполненное некоторыми порошками при низком вакууме, был близок по величине к потоку через пустое пространство при высоком вакууме между стенками с высокой отражательной способностью. Опыты Смолуховского и развитая им теория наметили пути изучения вакуумно-порошковой изоляции. Промышленное применение вакуумно-порошковой изоляции началось лишь в 40-х годах нашего века. С тех пор эта изоляция получила широкое распространение в технике низких температур.

Значительный вклад в усовершенствование низкотемпературной теплоизоляции внес П. Петерсен, опубликовавший в 1958 г. результаты своих опытов. Он испытал, в частности, вакуумно-порошковую изоляцию с экранированием излучения металлическим порошком, которая применяется в настоящее время в сосудах для сжиженных газов.

Петерсен применил также способ, уменьшающий перенос тепла в вакуумной изоляции излучением. При этом способе на изолируемый сосуд наматываются экраны из алюминиевой фольги, разделенные стекловолокнистыми матами. Эта изоляция, представляющая собой в сущности помещенную в вакуумированное пространство изоляцию типа «альфоль», получила название вакуумно-многослойной, экранно-вакуумной, вакуумно-слоистой суперизоляции (наиболее обоснованным можно считать первое название).

Теплообмен во всех видах низкотемпературной изоляции осуществляется излучением, теплопроводностью газа и твердого тела. Анализ теплообмена осложняется тем, что помещаемые в изоляционное пространство материалы имеют дисперсную структуру. Проблемам переноса тепла теплопроводностью и излучением в дисперсных средах посвящены известные монографии проф. А.Ф. Чудновского и профессора, К.С. Шифрина, а также ряд работ других советских ученых.

Теплоперенос теплопроводностью газа в широком диапазоне от атмосферного давления до высокого вакуума определяется отношением длин свободного пробега молекул газа между соударениями друг с другом и между соударениями их со стенками твердого тела. Расчет переноса тепла газом зависит от правильного подхода к оценке величины, определяемой структурой дисперсного материала.

Теплоперенос теплопроводностью в зернистых материалах обычно рассчитывают, принимая какую-либо упорядоченную (например, кубическую или тетраэдрическую) укладку зерен. Рассматривая зернистый материал, как слой беспорядочно расположенных зерен, в котором число касаний одного зерна с соседними взаимосвязано с пористостью материала, удалось получить новую формулу для определения коэффициента теплопроводности зернистых материалов. Использование теории контактного теплообмена позволило также найти зависимость коэффициента теплопроводности зернистых и волокнистых материалов от механического давления на них.

Лучистый тепловой поток в изоляции ослабляется в результате рассеяния и поглощения изоляционным материалом. Он задерживается также металлическими экранами в виде фольги или мелких частиц. Теория рассеяния излучения отдельными частицами продвинулась довольно далеко в своем развитии, чего нельзя сказать о теории переноса излучения в дисперсных средах. Сопоставление результатов экспериментального исследования вакуумно-порошковой изоляции с данными теории для отдельных частиц дает возможность оценить влияние различных факторов на рассеяние излучения малыми частицами в дисперсных средах.

Как видно, все виды теплообмена в дисперсной среде зависят, в первую очередь, от ее структуры. Поэтому изучение структуры (размеров частиц и пор, удельной поверхности) является важной составной частью исследования теплообмена в низкотемпературной изоляции.

Теплоизоляционные материалы и их свойства

Теплоизоляционные материалы разделяются на волокнистые, зернистые и ячеистые (пеноматериалы). В теплотехнике получили широкое распространение также изделия в виде матов, плит, скорлуп и другой формы, изготовленные из волокнистых и зернистых материалов с добавлением связующих материалов. В технике низких температур такие изделия используют редко, так как они имеют сравнительно высокий коэффициент теплопроводности. Характеристика теплоизоляционных материалов дана в ряде монографий и справочников.

На теплообмен в низкотемпературной изоляции большое влияние оказывают конвективные токи воздуха. Теплообмен при естественной конвекции тем интенсивнее, чем больше комплекс , где - коэффициент объемного расширения, — кинематическая вязкость и — температуропроводность. Величина этого комплекса для воздуха при понижении температуры с 273 до 173К возрастает в 6 раз, а при дальнейшем снижении до 90К — в 70 раз. Уменьшения конвективного теплообмена в низкотемпературной теплоизоляции достигают уменьшением размеров пустот (пор) в ней. С этой целью, в частности, зернистые материалы применяют обычно в виде порошков с размером зерен менее 1 мм. Ниже приведена краткая характеристика материалов, применяемых в технике низких температур, с указанием особенностей их использования.

Характеристики и область применения

Волокнистые материалы. Волокнистые материалы используются в технике низких температур большей частью для теплоизоляции аппаратуры установок сжижения и разделения газов

Минеральная вата является одним из самых дешевых и доступных материалов. Она состоит из стекловидных волокон, получаемых из расплавов горных пород (гранита, глины, доломита, кварцита) или шлаков металлургических печей. Сырье расплавляется в вагранке и вытягивается в нити расплава путем раздува струей пара пли воздуха. Образуемая вата состоит из волокон диаметром б—10 мкм и длиной от 3 до 20 мм и содержит некоторое количество шариков — «корольков», так как капли расплава при раздуве не успевают полностью вытянуться в нити.

Коэффициент теплопроводности минеральной ваты зависит от диаметра волокон, содержания «корольков» и степени уплотнения.

При средней температуре 580 — 190° К он составляет 0,03— 0,04 . Для уменьшения конвективных токов в изоляции вату следует набивать в изоляционное пространство низкотемпературных установок до максимально возможной плотности (300—400 ). Опыт показывает, что плотность набивки ваты в изоляционное пространство приблизительно в 1,5 раза выше плотности ее в лабораторном цилиндре под нагрузкой 9807 н/м2 (0,1 кг/см2). Это соотношение дает возможность заранее определить потребное для изоляции количество минеральной ваты и оценить коэффициент теплопроводности изоляции изделия.

Волокна минеральной ваты при монтажных работах поражают кожу и дыхательные пути. Этот недостаток в значительной мере устранен в гранулированной минеральной вате, которая состоит из комочков размером 10—15 мм, образованных из волокон механическим путем. Гранулированная вата не имеет «корольков», ее вес и теплопроводность меньше, чем у обычной ваты.

Минеральная вата представляет собой неорганический и, следовательно, негорючий материал. Однако она обычно содержит до 1% масла, добавляемого при изготовлении для уменьшения пыления. При таком содержании масла вата горит в среде кислорода, а при 1,5% масла становится взрывоопасной при контакте с жидким кислородом. Для изоляции кислородных установок применяют специально изготовленную вату, не содержащую масла,

В технике низких температур используют иногда войлок и маты, изготовленные из минеральной ваты с использованием битума или синтетических смол в качестве связующего вещества.

Стеклянная вата изготовляется двумя способами: дутьевым и способом непрерывного вытягивания. Первый способ более прост и дешев, волокна получаются диаметром от 3 до 30 мкм и длиной до 100 мм. По второму способу нити вытягиваются при помощи быстро вращающегося барабана из струек расплава стекольной шихты, вытекающих через фильеры в специальной пластине. При этом получаются волокна такого же диаметра, но большей длины. Раздув полученных таким образом непрерывных стеклянных волокон потоком горячих газов позволяет изготовить вату с диаметром волокон до 0,5 мкм.

Ее коэффициент теплопроводности при 293°К равен 0,047 . Волокно диаметром менее 15 мкм не ломается, вата из тонкого волокна имеет более низкую теплопроводность.

Маты и полосы из стекловолокна изготовляются путем наложения друг на друга и скрепления прошивкой тонких слоев стеклянных волокон, пересекающихся под прямым углом. Маты марки изготовляются из волокна диаметром 11—13 мкм, покрытого с двух сторон стеклянной тканью и простеганного стеклянными нитками. Они имеют плотность 100—110 кг/м2 и коэффициент теплопроводности 0,043 . Также маты из бесщелочного и более тонкого штапельного волокна диаметром 5—7 мкм и длиной 45—5.5 мм. Они имеют длину 1050 мм, ширину 840 мм и толщину 5—15 см. Коэффициент теплопроводности матов не превышает 0,048 при плотности 75— 85 кг/м2.

Высокими теплоизоляционными свойствами обладает вата из ультратонкого волокна (УТВ), получаемого способом раздува непрерывных волокон горячими газами. Основные показатели ваты: средний диаметр волокна 0,7—-1,5 мкм, плотность (без нагрузки) 5—6 кг/м3, коэффициент теплопроводности 0030—0,032 вт/(м-град) при 273° К, Под нагрузкой 0,002— 0*004 Мн/м2 (0,02—0,04 кГ/см2) вата уплотняется до 50— 60 кг/м2. С такой плотностью ее и следует набивать в изоляционное пространство низкотемпературного оборудования. Коэффициент теплопроводности стекловаты из УТВ при плотности 60 кг/м3 и средней температуре 190°К составляет 0,023 . Этот материал целесообразно применять для изоляции транспортируемого низкотемпературного оборудования, где важно наравне с низкой теплопроводностью обеспечить и малый вес изоляции.

Маты из УТВ представляют собой рыхлый слой волокон, скрепленных между собой естественным сцеплением или связующим из синтетических смол. Основные требования к матам: плотность (без нагрузки) 6—7 кг/м2 без подложки и 10— 12 кг/м2 с подложкой (подложкой служит алюминиевая фольга толщиной 20—25 мкм или органическая пленка толщиной 20 мкм), содержание связующего 15%, коэффициент теплопроводности 0,035 при 273° К.

Стекловолокно из щелочного стекла мало устойчиво по отношению к воде. При длительном хранении оно значительно снижает прочность, а при пребывании во влажной атмосфере со временем совершенно разрушается. Для низкотемпературной изоляции можно применять только волокно из бесщелочных стекол, устойчивых по отношению к воде.

Стекловолокнистые материалы применяют также для вакуумно-многослойной теплоизоляции в качестве теплоизолирующих, прокладок между слоями, отражающими тепловое излучение.

Шелковые очесы представляют собой отходы шелкопрядильной промышленности. По плотности и коэффициенту теплопроводности этот материал близок к лучшим сортам минеральной и стеклянной ваты. Его преимущество — более благоприятные, безопасные условия изоляционных работ. Шелковые очесы применяют иногда для изоляции низкотемпературных установок, в частности установок для разделения природного газа.

Порошкообразные материалы. Порошкообразные материалы применяются в технике низких температур, в основном, для изоляции сосудов со сжиженными газами.

Углекислая магнезия «альба» образуется при «белой варке» углекислой магнезии. Плотность магнезии «альба» 125— 150 кг/ж3, коэффициент теплопроводности при 190°К — в пределах 0,026—0,030 , До недавнего времени магнезию широко применяли и сосудах для сжиженных газов. Наряду с магнезией «альба» использовали углекислую магнезию с плотностью 400 кг/м3 и коэффициентом теплопроводности 0,052 при 190° К. Сейчас магнезия вытеснена более эффективными дешевыми изоляционными материалами.

Характеристики

Тип файла
Документ
Размер
1,33 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов доклада

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6489
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее