85331 (753430)

Файл №753430 85331 (Отображение геометрических структур)85331 (753430)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Отображение геометрических структур

ABSTRACT

Mapping geometrical arrangements of a fiber space of differential equations, bound mapping of Hopf-Colle is under construction.

Устанавливается изоморфизм отображений Хопфа-Коула (Hopf E, Cole J. D.) [ 1, 2 3 ] и отображений геометрических структур дифференциальных уравнений, что позволяет определить сферы действия геометрического исчисления с соответствующей метрикой. Эта сфера действия соответствующих метрик определяется линейными и нелинейными связями.

Имеется проблема.

В настоящее время геометрии искривленных пространств позволяют извлекать физическую информацию в основном о системах космических и галактических масштабов: релятивистская теория гравитации (ОТО) и новая релятивистская теория гравитации (РТГ), в которых определяется «метрический тензор риманового пространства».

Но геометрия – раздел математики. Геометрическое исчисление имеет силу во всех разделах физики. Примером может служить интегральное исчисление, которое широко используется во всех разделах физики.

С помощью метрического тензора опускают и поднимают индексы у тензоров, находят их абсолютные переносы, определяют ковариантные производные и связности… Итак, посредством определенных в ОТО и РТГ метрических тензоров дважды поднимаются индексы, например, у тензора диэлектрической проницаемости в электродинамике, определяется перенос составляющих вектора электрической напряженности. Каков физический смысл этих действий? Ведь метрические тензоры в ОТО и РТГ – это гравитационные потенциалы!

В материальном мире реализуются многомерные пространства. С каждой физической системой и с каждым процессом ассоциируются соответствующей структуры пространства. Введение многомерных расслоенных пространств возможно во всех разделах физики. И не просто возможно, а геометрии расслоенных пространств составляют основу теорий всех разделов физики.

Геометрические действия с соответствующей метрикой возможно только в рамках соответствующей связи. При переходе к другой связи посредством соответствующих отображений происходит переход и к другой метрике посредством этих же отображений. Введение тензоров (скаляров, спиноров, векторов, тензоров более высокого ранга) производится только относительно соответствующих преобразований обобщенных координат. В физике вводятся многомерные пространства внутренних степеней свободы. Примером пространства внутренних степеней свободы в физике может служить изотопическое пространство, векторы в котором вводятся на основе преобразований координат изотопического пространства. В пространстве внутренних степеней свободы вводятся обобщенные базовые и слоевые координаты.

В качестве демонстрации данных утверждений и рассматривается сформулированная здесь задача.

Отображение Хопфа-Коула связывает два дифференциальных уравнения и их решения [ 1, 2, 3 ]: нелинейное уравнение Бюргерса [ 4 ] и уравнение теплопроводности (диффузии). Эти уравнения отображают соответствующие связи. Этих уравнений мы рассматриваем частные случаи (демонстрируется сам принцип) и обобщаем их на слоевые пространства.

Нелинейное уравнение (3) (см. Табл.) получено из уравнения типа уравнения Бюргерса в классе решений

т.е. (1)

с использованием отображения (2) [ 5 ]:

Отображение геометрических структур

Таблица

Дифференциальное уравнение типа уравнения теплопроводности

(3)

-постоянные.

- длина вектора в пространстве

- постоянная интегрирования.

(5)

(8)

(10)

(12)

(5’)

Дифференциальные уравнения, связанные отображением Хопфа-Коула

(2)

- постоянные.

слоевые пространства

слоевые координаты

метрические функции

решение дифференциальных уравнений

дифференциальные уравнения для метрической функции

решения дифференциальных уравнений для метрических функций

отображение Хопфа-Коула для метрических функций

(7)

ковариантные слоевые координаты

составляющие метрического

тензора

-

однородные степени нуль в слоевых координатах.

коэффициенты связностей

-

однородные степени – 1 в слоевых координатах

.

длина векторов

условие Эйлера

выполнение свойства

(14)

дважды ковариантные составляющие метрического тензора

Уравнение, следующее из нелинейного дифференциального уравнения типа уравнения Бюргерса

(4)

- постоянные

- длина вектора в

пространстве

где - постоянная интегрирования и

(6)

(9)

(9)

(11)

(13)

(6’)

)

Из Таблицы следует, что структура составляющих контравариантных векторов, метрического тензора, связностей сохраняется. Изменяется их конкретное содержание. Отображения Хопфа-Коула меняют длину слоевых координат . Поскольку выполняется условие Эйлера и сохраняется свойство (14),то коэффициенты связностей найдены правильно. Итак, 1)если связь задана дифференциальным уравнением вида (3), тогда следует проводить геометрическое исчисление с метрическим тензором (10) и метрикой (5), 2)если же связь задана нелинейным дифференциальным уравнением вида (4), тогда следует проводить геометрическое исчисление с метрическим тензором (11) и метрикой (6), которые могут быть получены отображением Хопфа-Коула (2).

ЛИТЕРАТУРА

1.Cole J.D. On a quasilinear parabolic equation occurring in aerodynamics/ Quart App. Vath.,1951, 9, pp. 225-236.

2.Hopf T. The partial differential equation Comm. Pure Appl.Math.,1950, pp/ 201-230.

3.Абловиц М., Сигур X. Солитоны и метод обратной задачи. Перевод с англ. -М.: Мир, 1987, 180 с.

4.Burgers J. M. A mathematical model illustrating the theory of turbulence/Adv. Appl. Mech, 1948, 1, pp. 171-199.

5.Севрюк В.П. Геометрии расслоенных пространств теории обобщенных криволинейных координат. ВИНИТИ , N 3378-B90 Деп., 145 с.

Характеристики

Тип файла
Документ
Размер
706,71 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов доклада

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6363
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее