47746 (751217), страница 5
Текст из файла (страница 5)
• Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3
• Синий: BaMgAl10O17:Eu2+
Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего.
Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах.
Преимущества и недостатки плазменных дисплеев
Преимущества
Плазменная технология имеет отдельные преимущества над ЖК. Во-первых, люминофоры для плазменного телевизора обеспечивают более сочные цвета в более широком диапазоне. Цветовой диапазон плазменных экранов намного шире, чем у ЖК-телевизоров. Если сравнивать с ЭЛТ-мониторами, то цветовой диапазон "плазмы" в ряде случаев бывает хуже, поскольку у ЭЛТ условия для возбуждения люминофора гораздо лучше: энергия электронов выше, чем у УФ-излучения.
Затем, углы обзора шире, чем у ЖК-дисплеев. Основной причиной является то, что пиксели в "плазме" как бы сами излучают свет, а у ЖК-мониторов свет от лампы подсветки проходит через кристалл пикселя. Кроме того, плазменным панелям не нужен поляризатор.
Наконец, контрастность "плазмы" аналогична лучшим ЭЛТ-телевизорам. Основная тому причина - глубокий чёрный цвет. Выключенный пиксель не излучает цвет совсем, в отличие от пикселей ЖК. Кроме того, плазменные телевизоры обладают большей яркостью, чем ЭЛТ-мониторы, обеспечивая от 900 до 1000 кд/м². Здесь есть нюанс. В отличие от ЭЛТ и ЖК в "плазме" физически невозможно обеспечить такую яркость по всему экрану. Только на отдельных площадях. Дело в том, что для запитки такого "кипятильника" потребуется источник мощностью несколько киловатт. А мощные драйверы микросхем управления просто расплавятся! Поэтому то в плазме используется принудительное охлаждение вентиляторами. К сожалению, КПД преобразований "электрическая энергия - излучение" в плазме невысокий. Чтобы избежать этого явления применяется "военная хитрость" - анализируется суммарная потребляемая мощность. И если есть опасность превышения лимита - идёт принудительный сброс средней яркости экрана.
Также следует заметить, что плазменные дисплеи могут достигать больших размеров (с диагональю от 32" до 50") с минимальной толщиной. Это очень важное преимущество по сравнению с ЭЛТ-дисплеями, когда большой диагонали сопутствуют громоздкие габариты. Сейчас, кстати, есть приличные модели ЭЛТ-телевизоров с относительно небольшой толщиной.
Весомые недостатки
У плазменных панелей есть характерное свойство: большой размер пикселей. Достичь размера пикселя меньше 0,5 или 0,6 мм практически невозможно. Поэтому плазменные телевизоры с диагональю меньше 32" (82 см) попросту не существуют. Для обеспечения достойного разрешения у производителей плазменных панелей нет другого выбора, кроме как повышать размер дисплея с 32 до 50 дюймов (с 82 до 127 см).
Что касается качества картинки, то и здесь не всё гладко. Проблемы связаны с природой пикселей. Для излучения света пиксель плазмы требует электрического разряда. Он может либо гореть, либо не гореть, но промежуточного состояния нет. Потому для управления яркостью свечения производители используют метод импульсно-кодовой модуляции.
Метод такой. Чтобы пиксель горел ярко, его нужно часто зажигать. Для получения более тёмного оттенка зажигать пиксель можно реже. Глаз человека не заметит отдельные вспышки и усреднит значение яркости. Этот метод хорошо работает, но и не свободен от недостатков. Если средние и яркие оттенки отображаются вполне прилично, то тёмные оттенки страдают от недостатка света - их очень трудно отличить друг от друга.
Если получающаяся картинка с расстояния выглядит цельной, то на близком расстоянии вы вряд ли сможете ей наслаждаться. Установлено, что человеческий глаз не замечает мерцания с частотой выше 85 Гц, но это не всегда так.
По своей природе зрительная система состоит из собственно датчиков и "программы обработки" в мозге. Датчики относятся к интеграционному типу (с химической природой: разложение веществ под действием светового излучения, преобразование в электрические потенциалы и передача сигналов в мозг). Интегрирование параметров яркости и цвета происходит по времени и по площади. Если площадь объектов мала, то мерцание объектов мало заметно. Но если в поле зрения попадут объекты большей площади с модуляцией по яркости 85 Гц, то они будут обнаружены глазом! То есть датчиками, а не мозгом! Особую роль в деле обнаружения высокочастотных составляющих играет периферическое зрение. Именно оно и позволяет отлавливать компоненты 85-90 Гц.
Утомление глаз происходит вследствие того, что создаются некомфортные условия для спорадического сканирования поля зрения. Если обнаруживаются "опасные" объекты (с модуляцией, например, 85 Гц) то глазные мышцы стараются просканировать именно периферийную часть, которая имеет наибольшую чувствительность для локализации таких объектов. В обычной ситуации мышцы не рассчитаны на такие предельные нагрузки. Отсюда и накапливается усталость глаз. Дополнительная усталость возникает и в мозге. Принятые стимулы от "вибрирующих" пространственных объектов относятся к категории опасных, на фильтрацию событий тратятся дополнительные "мощности".
Чтобы избежать появления в изображении на плазменном экране артефактов и мерцания, связанных с ШИМ модуляцией, применяются изощрённые методы нелинейной импульсной модуляции с равномерным "размазываем" стимулов яркости по всему полю экрана.
К сожалению, полностью избавиться от мерцания на плазменных панелях не удаётся, особенно во время просмотра с близкого расстояния. Так что картинка на плазменном телевизоре больше, но и сидеть от экрана придётся дальше. Следовательно, большего погружения в фильм не получится.
Кроме того, у пикселей плазмы выгорает люминофор. На ЭЛТ-мониторе при долговременном выводе одной и той же картинки, она станет заметна на экране. После этого даже при смене картинки предыдущая будет видна, как будто она выгравирована на экране. Этот феномен связан с преждевременным старением люминофоров. Если они постоянно работают, то люминофоры стареют и становятся менее эффективными. Так как плазменные дисплеи тоже используют люминофоры, они выгорают точно так же, как и трубки телевизоров.
Впрочем, при стандартных условиях эксплуатации телевизора проблем возникнуть не должно, так как картинка на экране постоянно меняется, и пиксели стареют, более-менее, одинаково. Но для некоторых бизнес-применений (экран в магазине) могут возникнуть проблемы. Например, если на экране отображается один и тот же канал в режиме 24/7, то на нём могут выгореть пиксели логотипа (МТВ, НТВ и т.д.) - ведь они отображаются почти в каждом кадре. То же самое относится и к рекламным экранам, когда на них долго демонстрируется какая-либо картинка.
Именно этот феномен и ограничивает срок службы плазменных дисплеев. Несмотря на слухи, плазменные панели не "текут" и их не надо подзаряжать. Но люминофоры стареют, и с этим, к сожалению, ничего не поделаешь. Что ещё хуже, не все сцинтилляторы стареют одинаково: синий канал всегда выгорает раньше (хотя, надо сказать, ситуация сегодня намного улучшилась по сравнению с первыми плазменными панелями).
Наконец, отметим ценовой фактор: плазменные дисплеи довольно дороги. И здесь следует учитывать не только себестоимость самих панелей, которые трудно производить, но и то, что электроника панелей требует высоковольтных полупроводниковых схем, которые работают на пределах возможностей материалов. Контрольные цепи электродов должны выдерживать несколько сотен вольт на высоких частотах. Одним из последствий высоких напряжений является энергопотребление плазменных дисплеев, которое всегда выше, чем у ЖК-мониторов. Например, 42" (107 см) плазменный дисплей потребляет 250 Вт или даже выше, а ЖК-панель с той же диагональю будет потреблять всего 150 Вт.
Сферы применения плазменных панелей
Плазменные панели чаще всего встречаются в высококачественных видеосистемах большого формата. Их большой размер и хорошее качество картинки прекрасно подходят для просмотра DVD или телевидения высокого разрешения. Плазменные панели традиционно позиционируются на high-end сектор рынка, где проблемы высокой цены, старения люминофора и высокого энергопотребления вторичны по сравнению с качеством. Хотя, надо сказать, последние поколения ЖК-телевизоров начали вытеснять "плазму" и с этого рынка.
Если заглянуть дальше в будущее, то вполне очевидно, что ЖК будут "отъедать" рынок плазменных панелей, поскольку их диагональ продолжает увеличиваться. И причина проста: по мере наработки технологии производить ЖК-панели становится проще, да и стоят они дешевле.
Если ситуацию не изменят какие-либо инновации, плазменные панели останутся прерогативой специфических сфер использования, когда нужно выводить очень большую картинку для просмотра с большого расстояния, что сильно сужает область использования.
Проблема мерцания плазменных панелей также объясняет, почему эта технология мало подходит для компьютерных мониторов.
5. Электронная бумага
Электронная бумага — это аналогичное по своим функциям дисплею устройство, но к нему предъявляются и специфические требования. Они связаны именно с тем, что изначально оно задумано, как возможная альтернатива для бумаги, на которой традиционно выходят газеты, журналы и книги. Электронная бумага должна иметь очень небольшой вес, быть гибкой и экономной в энергопотреблении. Электронная бумага должна быть дешевой и надежной, поскольку она может быть использована в любой обстановке. Кроме того, желательно, чтобы изображение на ней было не подсвечено, как на обычном дисплее, а видимо в отраженном свете, как текст или картинка на обычной бумаге. Это более естественно воспринимается как человеческим зрением, так и на психологическом уровне.
Технология
Технология электронной бумаги (EPD — Electronic paper display) была разработана учеными из Массачусетского технологического института (Massachusetts Institute of Technology) в 1997 году. В том же году была создана корпорация E Ink (E Ink Corporation), которая и занимается технологией, ее совершенствованием и коммерциализацией.
«Цифровая бумага» была разработана с целью создания дисплеев нового типа, которые по оптическими и механическими характеристиками были бы схожи с обычной бумагой. Базовыми элементами таких дисплеев являются микрокапсулы, диаметр которых не превышает толщину человеческого волоса. Внутри каждой капсулы находится большое количество пигментных частиц (диаметр частицы не превышает 1-5 мкм) двух цветов: положительно заряженные белые и отрицательно заряженные черные (заряд наносится с помощью специального заряженного полимера), а все внутреннее пространство капсулы заполнено прозрачной жидкостью.