26843-1 (750076), страница 2
Текст из файла (страница 2)
С предложенным объяснением полностью согласуется и требование экзотермичности реакции, в которой наблюдается температурный гистерезис, и наличие промежуточных точек на кривой, отражающей температурную зависимость, и возрастающая крутизна восходящих ветвей, и практическая независимость вида петли гистерезиса от природы катализатора и типа реакции. Высказанные соображения приводят к выводу, что температурный гистерезис имеет не столько химическое, сколько физическое происхождение.
Как известно, наилучшим критерием правильности любой гипотезы служит ее предсказательная способность. Попробуем проверить нашу концепцию локальных перегревов активных центров катализатора. Если мы правы, гистерезисный эффект должен быть тем сильнее, чем больше теплота реакции. Будем судить о его величине по ширине петли гистерезиса, которую можно оценивать разными способами, но проще всего - по разности температур на восходящей и нисходящей ветвях в точках, отвечающих одной и той же степени превращения (скажем, 30%). Понятно, что чем больше тепла выделяется в каждом химическом акте, тем сильнее разогревается активный центр и тем выше температурный градиент. Расположим исследованные нами реакции с температурным гистерезисом в порядке уменьшения их теплот: окисление СО - 283 кДж/моль, метанирование СО - 206 кДж/моль, гидрирование пропилена - 124 кДж/моль. В первой из них гистерезисный эффект наиболее силен: даже после полного прекращения нагрева температура не понижается до комнатной, а окисление не останавливается, оно продолжается в так называемом режиме самоподдержания, за счет собственной теплоты реакции*. Во второй реакции эффект тоже весьма значителен, но в этом случае ширина петли гистерезиса вполне конечна, ибо она замкнута, тогда как при окислении СО петля по сути остается открытой. Ясно, что гистерезисный эффект в первой реакции сильнее, чем во второй. Наконец, в третьей реакции - гидрировании пропилена - гистерезис наименьший. Следовательно, как и предсказывает концепция локальных перегревов, по величинам теплот исследованных реакций и по ширине петли гистерезиса они располагаются в одной и той же последовательности.
* Возникает заманчивая возможность, однажды запустив реакцию (т.е. осуществив “зажигание”), далее поддерживать ее, не подводя внешнюю энергию. Это принципиально осуществимо, но, к сожалению, в довольно узком диапазоне соотношений реагентов - монооксида углерода и кислорода.
Если реакция эндотермическая, т.е. идет с поглощением тепла, или ее тепловой эффект близок к нулю, ожидать проявления в ней температурного гистерезиса, видимо, не следует. Мы проверили и это, выбрав в качестве эндотермической реакции дегидрирование изобутана, а реакции, идущей практически без теплового эффекта, - изомеризацию бутена-2 в бутен-1. Как и ожидалось, в обоих случаях гистерезис на кривых зависимости степени превращения исходных соединений от температуры не был обнаружен.
Проверим еще один прогноз. Мы уже довольно подробно сравнивали предполагаемое поведение металла, вкрапленного в неактивный носитель, и массивного металла без носителя и в результате пришли к заключению, что в последнем случае температурный гистерезис если и может возникнуть, то должен быть минимальным. Это предположение полностью подтвердилось в опыте: в реакциях окисления СО на платиновой фольге и его метанирования на никелевой проволоке петли гистерезиса были несравнимо Уже, чем в тех же реакциях на катализаторах с подложкой.
Величина гистерезисного эффекта должна зависеть и от содержания в катализаторе активного компонента. Согласно концепции локальных перегревов, с увеличением его концентрации, а значит, и концентрации активных центров, возрастает выделение тепловой энергии в экзотермической реакции. Следовательно, одновременно должен усиливаться и температурный гистерезисный эффект. Это и было выявлено нами в серии опытов по окислению монооксида углерода на медьсодержащих катализаторах с разным количеством оксида меди (8, 29 и 51%), нанесенных на подложку: чем больше было CuO в катализаторе, тем шире становились петли гистерезиса, которые к тому же смещались в область более низких температур.
|
| Температурные зависимости степени окисления СО на катализаторах, содержащих 51 (штриховая кривая), 29 (цветная кривая) и 8% оксида меди. Как видно из графиков, гистерезисный эффект усиливается по мере увеличения концентрации CuO. |
Итак, довольно много наблюдений свидетельствуют в пользу того, что температурный гистерезис “против часовой стрелки” в гетерогенном катализе обязан своим происхождением локальному перегреву активных центров катализатора в результате выделения избыточного количества тепла в экзотермической реакции. Чем обусловлен гистерезис “по часовой стрелке”, еще предстоит выяснить.
Излагая свои представления о причинах гистерезисных явлений, мы, конечно, опустили целый ряд экспериментальных подробностей, некоторые наблюдения и сопутствующие соображения. Мы пытались, в первую очередь, описать логику исследования, цепочку умозаключений, которые привели нас к развиваемой нами концепции. Наша работа далеко не закончена, она продолжается и сейчас, и в ней возможны, разумеется, еще многие повороты. Нам бы хотелось, чтобы изложенные здесь представления стали одним из кирпичиков того фундамента, на котором строится громадное и очень непростое здание науки о катализе.
Литература
Статья Б.С.Гудкова, А.Н.Субботина, В.И.Якерсона











