lek2 (744232), страница 5

Файл №744232 lek2 (Лекции по экономической теории) 5 страницаlek2 (744232) страница 52016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

При заданной технологии один и тот же выпуск продукции (10 тыс. жевательных резинок) может быть обеспечен с большим применением капитала (как в точке А) или с большим привлечением труда (как в точке D).

Возможны и промежуточные варианты (точки В и С). Если мы соединим все сочетания ресурсов, использо­вание которых обеспечивает одинаковый объем выпуска продук­ции, то получатся изокванты. Если изокванта является непрерыв­ной линией, то число возможных комбинаций ресурсов будет бес­конечным, что обеспечивает чрезвычайную гибкость принимаемых фирмой решений по организации производства продукции.

Изокванта, или кривая постоянного (равного) продукта, — кривая, представляющая бесконечное множество комби­наций факторов производства (ресурсов), обеспечивающих одина­ковый выпуск продукции.

Изокванты для процесса производства оз­начают то же, что и кривые безразличия для процесса потребления. Они обладают аналогичными свойствами: имеют отрицательный на­клон, выпуклы относительно начала координат и не пересекаются друг с другом.

Изокванта, лежащая выше и правее другой, пред­ставляет собой больший объем выпускаемой продукции, например 20 тыс. жевательных резинок, 30 тыс. штук и т.д. Однако, в отличие от кривых безразличия, где суммарное удовлетворение потребителя точно измерить нельзя, изокванты показывают реальные уровни производства: 10 тыс., 20 тыс., 30 тыс. и т.д.

Совокупность изоквант, каждая из которых показывает максимальный выпуск продукции, достигаемый при использовании определенных сочетаний ресур­сов, называется картой изоквант.

Рис. 6.5. Зона технического замещения (субституции)

Зона технического замещения. Мы будем рассматривать изокванты лишь в зоне технического замещения (или субституции), где изокванты низ­шего порядка не пересекаются с изоквантами более высокого уров­ня. Чтобы нагляднее проанализировать эту мысль, предположим обратное – пересечение изоквант (рис. 6.5).

Допустим, изокванта I пересекает изокванту II в точках А и D. Это означает, что для производства меньшего количества продукции (например, 10 тыс. жевательных резинок) требуется столько же ресурсов, сколько было бы достаточно для производства большего количества продукции (например 20 тыс. резинок).

Очевидно, что такая производственная комбинация неэффективна. Для рационального производителя про­блема выбора оптимального сочетания ресурсов может быть по­ставлена лишь в пределах зоны технического замещения (субсти­туции), т. е. в пределах кривой ВС. Именно эта область и будет предметом нашего анализа в дальнейшем.

Рассмотрим рис. 6.5. Увеличение затрат фактора F1 (труда) компенсирует уменьшение затрат фактора F2 (капитала). Угловой коэффициент изокванты показывает нам, как происходит техни­ческое замещение (субституция) одного ресурса (капитала) другим (трудом).

Поэтому абсолютное значение этого коэффициента ха­рактеризует предельную норму технического (или технологичес­кого) замещения (marginal rate of technical substitution) MRTS.

Предельная норма технического замещения MRTS аналогична пре­дельной норме замещения (MRS) в теории потребительского поведения:

MRTSLK = dy/dx = K/L. (6.7)

В табл. 6.1 показано изменение предельной нормы техничес­кого замещения при росте затрат труда с 1 до 5. С увеличением затрат труда уменьшаются затраты капитала. Это означает, что уменьшается предельная производительность труда и увеличива­ется предельная производительность капитала, т. е.

MRTSLK = K/L = MPL/ MPK.

Таблица 6.1

Измерение нормы технического замещения капитала трудом (данные условные, рис. 6.4)

Затраты труда

MRTSLK = K/L

C 1 до 2

2

С 2 до 3

1

С 3 до 5

2

Уменьшение предельной нормы технического замещения одного фактора другим (в данном случае капитала трудом) свидетельст­вует о том, что эффективность использования любого ресурса ограничена. По мере замены капитала трудом отдача последнего (т.е. производительность труда) снижается. Аналогичная ситуация про­исходит и в ходе замены труда капиталом. Это означает, что

MPL x L + MPK x K = 0 (6.8)

Равновесие производителя. Анализ с помощью изоквант имеет для производителя очевидные недостатки, так как использует только натуральные показатели затрат ресур­сов и выпуска продукции.

Максимизировать выпуск при данных издержках позволяет прямая равных издержек, или изокоста (isocost line). Если Р1 — цена фактора производства F1 а Р2 — цена F2, то, располагая определенным бюджетом С, наш производитель мо­жет купить Х единиц фактора F1 и Y единиц фактора F2:

C = P1X + P2Y или Y = - P1/P2*X + C/P2.

Для труда и капитала:

C = wL + rK или K = C/r – w/r*L

Рис. 6.6. Изокоста

Это уравнение прямой представляет комбинации ресурсов, использование которых ведет к одинаковым затратам, израсходо­ванным на производство (рис. 6.6). Рост бюджета производителя или снижение цен ресурсов сдвигает изокосту вправо, а сокращение бюджета или рост цен – влево (рис. 6.6).

Касание изокванты с изокостой определяет положение равновесия производителя, по­скольку позволяет достичь максимального объема производства при имеющихся ограниченных средствах, которые можно затратить на покупку ресурсов.

Учитывая, что в точке Т (рис. 6.7) изокванта и изокоста имеют одинаковый наклон и что наклон изокванты изме­ряется предельной нормой технического замещения, можно запи­сать условие равновесия как

MRTSLK = - dK/dL = - w/r. (6.9)

Рис. 6.7. Равновесие производителя

Путь развития и экономия от масштаба производства. Предположим, что цены ресурсов ос­таются неизменными, тогда как бюд­жет производителя постоянно растет.

Соединив точки пересечения изоквант с изокостами, мы получим линию OS — "путь развития" (аналогичную линии уровня жизни в теории поведения потребителя). Эта линия показывает темпы рос­та соотношения между факторами в процессе расширения произ­водства. На рис. 6.8, например, труд в ходе развития производст­ва используется в большей мере, чем капитал. Форма кривой "путь развития" зависит, во-первых, от формы изоквант и, во-вторых, от цен на ресурсы (соотношение между которыми определяет наклон изокост). Линия "путь развития" может быть или кривой, исходящей из начала координат.

Рис. 6.8. Кривая "путь развития"

Если расстояния между изоквантами уменьшаются, это сви­детельствует о том, что существует возрастающая экономия от масштаба, т. е. увеличение выпуска достигается при относительной экономии ресурсов (рис. 6.9).

О L

Рис. 6.9. Возрастающая экономия от масштаба

Если расстояния между изокванта­ми увеличиваются, это свидетельствует об убывающей экономии от масштаба (рис. 6.10).

Рис. 6. 10. Убывающая экономия от масштаба

В случае, когда увеличение производства требует пропорционального увеличения ресурсов, говорят о постоянной экономии от масштаба (рис. 6.11).

Рис. 6.11. Постоянная экономия от

масштаба

Таким образом, изокванта позволяет не только экономно использовать имеющиеся ресурсы для достижения данного объема производства, но и определить минимально эффективный размер предприятия в отрасли.

В случае возрастающей экономии от масштаба фирме необходимо наращивать объем производства, так как это приводит к относительной экономии имеющихся ресур­сов. Убывающая экономия от масштаба свидетельствует о том, что минимально эффективный размер предприятия уже достигнут и дальнейшее наращивание производства нецелесообразно. Тем са­мым анализ выпуска с помощью изоквант позволяет определить техническую эффективность производства.

Пересечение изоквант с изокостой позволяет определить не только технологическую, но и экономическую эффективность, т. е. выбрать технологию (трудо- или капиталосберегающую, энерго- или материалосберегающую и т. д.), позволяющую обеспечить максимальный выпуск продукции при тех денежных средствах, которыми располагает производитель для организации производства.

11. Литература

  1. Базовый учебник: Нуреев Р. М. Курс микроэкономики. Учебник для вузов. – М.: ИНФРА-М, 1999. Гл. 5.

Наилучшее на русском языке изложение вопроса о производстве и предложении благ можно найти в книгах Д. Н. Хаймана (гл. 6—7), Р. Пиндайка и Д. Рубинфельда (гл. 6) и в приложении к учебнику А. Пезенти (т. 2, с. 456—567, 524—549). Кратко, хотя и немного сухо, вопрос рассмотрен у У. Баумоля (гл. 9). Популярное изложение отдельных вопросов темы мож­но найти у Э. Долана, Дж. Д. Линдсея (гл. 6), П. Хейне (гл. 5 — значение предельных величин), К. Макконнелла и С. Брю (гл. 24, 29 — особенно вопрос о соотношении минимального размера эффективного предприятия и объема внутреннего рынка). Первоначальная разработка вопроса о до­полняемости и заменяемости в сфере производства дана Дж. Хиксом, крат­кий исторический обзор — Б. Серебряковым, более строгий математичес­кий анализ, а также дальнейшее развитие темы читатель найдет в книгах X. Вэриана, Р. Аллена, М. Интриллигатора и Э. Маленво.

2. Аллен Р. Математическая экономия. Гл. 17 (17.1—17.5). С. 502—523.

Интриллигатор М. Математические методы... Гл. 8 (П. 8.1— 8.2). С. 237—256.

Маленво Э. Лекции... Гл. III. § 1—8. С. 52 — 80.

Хикс Дж. Р. Стоимость и капитал. Гл. VI, VII. С. 177—199.

Vanan H. Intermediate Microeconomics. A Modern Approach. 4 ed. N. Y. 1996. Ch. 17. P. 305—316. Русский перевод: Вэриан X. Мик­роэкономика. Промежуточный уровень. Современный подход. М.: ЮНИТИ, 1997. С. 339—351.

А. Титков ЭТ УМК Тема 07. Фирма как совершенный конкурент

Учебные цели

  1. Выявить основные характеристики рынка совершенной конкуренции.

  2. Объяснить, почему конкурентная фирма не может влиять на рыночную цену продукта.

  3. Понять, как конкурентная фирма, максимизирующая прибыль, принимает решение о предложении товаров и услуг.

  4. Объяснить, почему в определенных условиях фирмы временно прекращают производство продукта.

  5. Показать, как формируется краткосрочная кривая предложения фирмы.

  6. Уяснить, как устанавливается долгосрочное равновесие в конкурентной отрасли.

  7. Понять, как в условиях конкурентной экономики достигается наиболее эффективное использование ресурсов общества.

План.

Характеристики

Тип файла
Документ
Размер
1,02 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6508
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее