183666 (743608), страница 2

Файл №743608 183666 (Структура графа состояний клеточных автоматов определённого типа) 2 страница183666 (743608) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Для любого «полного» корневого поддерева g с корнем v дерева G (с корнем в ):

, где и – подмножество такое, что: , при этом (см. рис. 3.2.2).

Доказательство

Воспользуемся методом математической индукции:

  1. m = 1:

Пусть , тогда . Тогда, учитывая утверждение 1.1, и , получим требуемое.

  1. Пусть утверждение леммы верно для m = k, тогда:

  2. Докажем теорему для m = k+1.

Мы имеем: , тогда:

Если и , то :

Из утверждения 3.2.1:

, но , т.е. , откуда , ч.т.д.


Теорема 3.3.1.3

«Нулевое» дерево ― бинарное дерево с точностью до петли в корне en.

Доказательство:

П

Рис. 3.3.3

усть и, тогда мы можем достроить его, пользуясь теоремой 3.3.1.2 до бинарного дерева с точностью до петли в корне en (см. рис. 3.3.3) Заметим, что n+1-го яруса быть не может т.к. тогда мы достраиваем этот ярус и получаем такое, что но противоречие.

Теорема 3.3.1.4

Все деревья (в том числе и примыкающие к каждой вершине произвольного цикла) будут иметь столько ярусов, сколько и «нулевое», причем будут иметь такую же структуру.

Более точно: дерево, притягиваемое каждой точкой каждого цикла графа состояний, изоморфно дереву, притягиваемому точкой en.

Доказательство:

Предположим «нулевое» дерево состоит из n ярусов тогда:

  1. Если наше дерево состоит менее чем из n ярусов, то, пользуясь теоремой 3.3.1.2, мы восстанавливаем его до дерева изоморфного «нулевому».

  2. Если дерево имеет m ярусов, где n

  3. , получается, что «нулевое» дерево состоит из m ярусов Ї противоречие.



§3.3.2 Исследование высоты деревьев

Теорема 3.3.2.1

Если длина последовательности равна 2k-1, то высота деревьев будет равна 2k-1.

Доказательство:

Пример для k=1 и k=2 строятся довольно просто:

k=1 k=2

0 (1) 0 0 (1,0,0) 0

0 (0) 0 0 (0,1,0) 0

0 (1,0,1) 0

0 (0,0,0) 0

Докажем по индукции

  1. База индукции:

Пусть k=3, тогда:

0 (1,0,0,0,0,0,0) 0

0 (0,1,0,0,0,0,0) 0

0 (1,0,1,0,0,0,0) 0

0 (0,0,0,1,0,0,0) 0

0 (0,0,1,0,1,0,0) 0

0 (0,1,0,0,0,1,0) 0

0 (1,0,1,0,1,0,1) 0

0 (0,0,0,0,0,0,0) 0

Высота дерева равна 2k=7.

  1. Пусть утверждение верно для n=k, тогда докажем его для n=k+1:

;

тогда:

Так как -й элемент равен «0» и остальные элементы симметричны относительно его, то в каждом последующем поколении этот элемент будет равен «0», следовательно, правая и левая части перейдут в состояние (0,0,…,0) через 2k поколений. Таким образом, высота дерева будет 2k +2k-1=2k+1-1=2n-1 ч.т.д.

Теорема 3.3.2.2

Если длину последовательности представить в виде

где , тогда 2k-1 Ї высота «нулевого» дерева.

Доказательство:

По теореме 3.3.2.1 , где

с корнем

.

Возьмем последовательность длиной

;

заметим, что тогда:

(в связи с симметрией относительно )

Но тогда:

Высота дерева при n=2n-1 равна высоте дерева при n=32n-1. В связи с симметрией относительно

, мы получаем:

Высота дерева при n=2n+1+2n-1-1 равна высоте дерева при n=32n-1-1.

Таким образом, мы получаем, что если представить длины последовательности в виде: , то 2-1k Ї высота дерева.

Теорема доказана.



§3.4 Структура G при p2

Введение

В параграфе 2 мы рассматривали структуру графа состояний для произвольного линейного оператора над Zp. В данном параграфе пойдет речь о структуре графа G определенного в параграфе 3.1. По аналогии со случаем p=2, по состоянию числовой полоски длины n (т.е. самого автомата с состояниями 0,1,..p-1) будем определять вектор , и рассматривать такое, что:

Все остальные основные определения вводятся аналогичным образом, как и в случае p=2, основным предметом исследования является структура графа G.

Одним из важных свойств оператора является его аддитивность:

которая следует из линейности оператора .

В предыдущем параграфе было доказано утверждение о том, что для произвольного линейного оператора «нулевое» дерево – p-нарное дерево с точностью до петли в корне (0,0..,0) (теорема 2.2). В данном параграфе будет определена высота нулевого дерева, тем самым будут определена высота дерева притягиваемого каждой точкой каждого цикла графа G (теорема 2.3).

Теорема 3.4.0

Вершина является висячей тогда и только тогда, когда n – нечётное и выполняется условие:

Доказательство:

Пусть у нас есть последовательности и

Тогда Но тогда .

Но по условию , т.е. для того чтобы вершина была висячей необходимо и достаточно, чтобы , т.е.

Теорема полностью доказана.

Теорема 3.4.1

Если длина последовательности кратна двум, то граф Gφ ― дизъюнктное объединение циклов.

Доказательство:

Воспользуемся тем, что дерево, притягиваемое каждой точкой каждого цикла, изоморфно нулевому дереву. Рассмотрим нулевое дерево. Его высота при n=2k равна нулю. Это следует из того, что , но m=2s+1, противоречие. Теорема полностью доказана.

Теорема 3.4.2

Если длину последовательности представить в виде pk(2l)-1, (p,l)=1, тогда pk есть высота «нулевого» дерева.

Доказательство:

Для начала докажем следующие леммы.

Лемма 1

– висячая вершина причем, .

Рис. 3.4.1 Пример для p = 5.

Доказательство леммы 1:

Для начала рассмотрим шахматную раскраску таблицы (2pk-1)(pk+1), строки которой есть последовательности , , …, (см. рис.). Тогда числа, стоящие на закрашенных позициях равны 0.

Остальные координаты образуют треугольник Паскаля с вершиной в 1 (см. пример на рис. 3.4.1 для p = 5). Тогда т.к. , то:

,

при этом (все значения биноминальных коэффициентов берутся по модулю p, так как мы рассматриваем вектор в пространстве )

Замечание:

Здесь и ниже, все многочлены рассматриваются над полем

Докажем, что

Действительно, т.к. (т.к. ), то: .

Откуда , ч.т.д.

Замечание

Висячесть вершины следует из теоремы 3.4.0

Следствие

– висячая вершина причем, .

Для доказательства домножим элементы рассмотренного выше треугольник Паскаля на i и в силу простоты p получим требуемое.

Лемма 2

Вершина н вида:

является висячей при условии, что число последовательностей вида , где не кратно p, причем .

Доказательство леммы 2:

Из теоремы 3.4.0, вершина является висячей при n нечётном и выполнении условия:

.

Таким образом, при подстановке соответствующих значений получим:

.

, где .

Таким образом, вершина вида:

является висячей при условии, что число конструкций вида , где m=1 либо (p-1), не кратно p. Вторая часть леммы следует из следствия леммы 1, причем, как и в лемме 1, Лемма доказана.

Приступим теперь к доказательству основной теоремы. Из леммы 1 следует, что высота дерева при равна pk, из леммы 2 следует, что если высота дерева при равна высоте дерева при и, при условии, что (l,p)=1.

Теорема полностью доказана.

§4 Структура графа состояний оператора взятия разностей

Введение

В данном параграфе рассматривается структура графа состояний G оператора взятия разностей (см. [1]), который определяется следующим образом:

В ([1]) был рассмотрен только над Z2, в этом параграфе оператор взятия разностей будет рассмотрен над полем Zp. Оператор взятия разностей используется для анализа сложности функций (см. [1]).

На основе результатов параграфа 2 (теоремы 2.2, 2.3), для анализа структуры графа состояний оператора достаточно определить высоту нулевого дерева, тем самым будут определена высота дерева притягиваемого каждой точкой каждого цикла графа G (теорема 2.3).

Теорема 4.1

Если , то наименьший период функции (mod p) по i равен pk.

Доказательство

Проверим сначала, что число pk является периодом при :

Действительно, т.к.:

,

то , ч.т.д.

Теперь покажем, что это наименьший период, если , наименьший период должен быть делителем числа pk, поэтому мы проверим, что pk-1 – не период.

Докажем, что при число сочетаний , действительно, пусть j= i-(p-1)pk-1, тогда . Тогда, т.к.:

,

откуда т.к. и , то ,т.е. , ч.т.д.

С другой стороны , поэтому число pk-1 не является периодом функции

(mod p) по переменной i, когда , при этом условии .

Теорема 4.2

Если длину последовательности представить в виде: где , , тогда pk есть высота «нулевого» дерева.

Доказательство

Проведем явное интегрирование функции периода n, т.е. определим , такое, что () = (1,1,…,1) (строгое определение интегрирования см. в [1])

Рис. 4.1

Легко видеть, что все интегрированные «интегралы» (с начальным условием при t=1) – это приведенные по модулю p косые линии треугольника Паскаля, на которых j = 0 для исходной функции , а затем, по мере повторного «интегрирования», ответы доставляют косые линии с j = 0,1,2… (см рис. 4.1)

Следовательно, для выяснения того, сколько раз удастся «проинтегрировать» функцию (т.е. определить высоту нулевого дерева) в классе n-периодических функций (т.е. в классе n-периодических последовательностей) остается выяснить, при каких значениях j функция аргумента i будет иметь период n.

В силу теоремы 4.1, если n= , то построение «нулевого» дерева, описанного выше, будет успешным до тех пор, пока «j-кратные интегралы» от функции будут оставаться n-периодическими функциями аргумента i. Но наименьший период указанной функции переменной i равен pr при . Чтобы эта функция была n-периодической, необходимо, чтобы число n= делилось на наименьший период, т.е. чтобы . Откуда следует, что если длину последовательности представить в виде: n= , тогда pk есть высота «нулевого» дерева, ч.т.д.



§5 Перспективы исследования

  1. Более подробно исследовать структуру , а именно:

  • Определить количество циклов и их длину;

  • Описать множество корней деревьев и т.д.

  1. Рассмотреть двумерный вариант клеточного автомата (на клеточном прямоугольнике ) с теми же вопросами, т.е. описать структуру графа состояний.

  2. Более подробно рассмотреть матричную интерпретацию.

  3. В связи с использованием одномерных клеточных автоматов, а также линейных операторов, в теории кодирования, найти количественные и качественные характеристики автомата (например, определить коллизии и т.д.).

  4. В связи с тем, что некоторые правила «эквивалентны», изучить их относительно данного аспекта (т.е. найти некоторую «совместимость» между правилами). Определить условия эквивалентности правил, найти разбитие на классы эквивалентности. Данная задача является открытой проблемой.



§6 Резюме

Основным предметом исследования являлась рассмотрение структуры графа , более подробное изучение которой, является одним из наиболее перспективных направлений дальнейшего исследования. В общем случае получена следующая характеристика структуры графа :

1. Каждая компонента связности графа

является циклом (возможно длины 1), каждая вершина которого притягивает дерево (возможно нулевой высоты).

2. и ;

3. ;

4. «Нулевое» дерево ― p-нарное дерево с точностью до петли в корне en (0,0..0), причем его высота равна

  • (для оператора , описывающего функционирование ACS-автомата и ), если длину последовательности представить в виде

  • где , ;

  • (для оператора , описывающего функционирование ACS-автомата и ) если длину последовательности представить в виде:

  • где , .

5. «Нулевое» дерево ― p-нарное дерево с точностью до петли в корне en (0,0..0), причем его высота равна (для оператора взятия разности), если длину последовательности представить в виде:

где , ;

6. Все деревья (в том числе притягиваемые каждой вершиной каждого цикла) будут иметь столько ярусов, сколько и «нулевое», причем будут иметь такую же структуру. Т.е. дерево, притягиваемое каждой точкой каждого цикла графа состояний, изоморфно дереву, притягиваемому точкой en (0,0..0).



Используемые источники. Список использованной литературы

Используемые источники

  1. М.С. Глущенко, П.С. Пересторонин, Почти центральная симметрия (доклад на IV Балтийском научно–инженерном конкурсе, Санкт-Петербург, 2008 г.)

  2. М.С. Глущенко, П.С. Пересторонин, Почти центральная симметрия (доклад на XII Белорусской республиканской конференции учащихся общеобразовательных учреждений, Минск, 2008 г.)

Список использованной литературы

  1. В.И. Арнольд, Сложность конечных последовательностей нулей и единиц и геометрия конечных функциональных пространств (из доклада Московскому математическому Обществу 22 ноября 2005 г.)

  2. В.И. Арнольд, Топология и статистика арифметических и алгебраических формул, Успехи математических наук 58(2003), №4, 3-28

39






Характеристики

Тип файла
Документ
Размер
5,2 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее