183458 (743577), страница 10

Файл №743577 183458 (Економіко–математичне моделювання) 10 страница183458 (743577) страница 102016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

Остання система еквівалентна системі:

а + b = c + d, a-l + b-1 = с-1 + d-1.

що рівносильне:

а + b = c + d, ab = cd

яка, як неважко бачити, може мати не більше одного рішення (з точністю до перестановки). Дійсно, останнє твердження рівносильне тверждення про те, що рівняння х(х + k) = r має не більше двох різних розв’язків по х для х, k, r з Еn. Покажемо це. Хай є інше рішення у: у(у + k) =r.

Тоді , звідки , тобто , звідки або x = у, або у = х + k ( нагадаємо, що En - поле характеристики 2).Тим самим теорема 3 повністю доведена.

Справедлива

Теорема 4. Хай на En заданий ідемпотентний поліном Уолша:

Хай з En такі, що все rj, незалежні і , . Тоді:

де

Доказ. Без обмеження спільності можна вважати, що все {rj} утворюють стандартний базис в Еt (загальний випадок зводиться до цього лінійним перетворенням Et). Тоді на підпросторі Et, поліном R(x) запишеться у вигляді:

де dj, - цілі ненегативні числа, в сумі даючі s. Легко бачити, що шукана сума квадратів значень полінома R(x) на підпросторі Еt, рівна .

Оцінимо знизу суму . Оскільки значення полінома R(x) на векторах Et

рівні άs, те, як вже наголошувалося, ідемпотентному поліному R(x) на підпросторі Е, відповідатиме двійковий код з 2t стовпців і із загальним числом кодових слів 2t, причому базисні кодові слова складаються з ,одиниць

і мінус одиниць в мультиплікативному записі двійкового коду.

Ми маємо у результаті г випадкових величин, розподілених по одному і тому ж

закону - вони приймають два значення з ймовірностями відповідно і мають ентропію Нά кожна. Крім того, ці випадкові величини утворюють багатовимірний розподіл з вірогідністю По властивості субадитивності ентропії маємо:

Застосовуючи відому нерівність Юнга:

маємо:

або:

або:

Остаточно:

що і доводить теорему 4.

Структура виняткової безлічі індексів, які забезпечують >квв валентність метрик Мінковського, тісно примикає до задач побудови і вивчення лінійних кодів.

Під кріптологією в широкому значенні розуміється мистецтво проектуванні і злому секретних систем, при цьому проектування називається криптографією а зламуюча частина - кріптоаналізом. При цьому треба мати у вигляді, що є багато кодів, жодним чином не пов'язаних з проблемою секретності, - це код ASCII для перетворення символів алфавіту в двійкову форму для з'явившися лінія в ЕОМ, а також універсальний промисловий код (штриховий) з ряд чорних вертикальних ліній, що містять інформацію про вироби. Історично перший код, призначений для передачі повідомлень, пов'язаний з ім'ям винахідника телеграфного апарату Семюеля Морзе і відомий всім як азбука Морзе. Код Морзе заснований на короткочасних (крапка) і тривалих (тире) їм пульсах струму; інший код (Бодо) для кодування використовує два елементарні сигнали - імпульс і паузу. Зручно, відволікаючись від фізичної природи сигналів, позначати два елементарні сигнали символами 0 і 1, тоді кодові слів представляються послідовністю нулів і одиниць.

При передачі повідомлення в умовах перешкод основна помилка пов'язана з тим, чий ряд символів може бути переданий неправильно, тобто Про замість і навпаки. Для того, щоб можна було однозначно декодувати повідомлення, слід накласти додаткові умови на сам спосіб кодування повідомлень, тобто на код. Є слова а1, а2,..., аn повинні бути декодовані як b1, b2 ..., bn, але передане слів декодувалося в деяке слово b, не співпадаюче ні з одним з bi то приписати слову b „найближче” із слів b1, b2..., bn. Основна задача, виникаюча на цьому шляху така: який повинен бути код з n символів, щоб він правильно декодував передане слово, при умові, якщо вчинено не більш t - помилок в передачі? Легко показати, що, якщо слова коду відстоять один від одного на віддаль Хемінга, не менше ніж 2t + 1, то така задача розв'язується однозначно по кодуванню в найближче слово. Дійсно, якщо передане слово відстоїть від двох різних кодових слів на відстані, не перевершуючі t( тобто при передачі його зроблено не більш t помилок по відношенню до цих двох слів), то по формулі трикутника самі ці кодові слова відстоять один від одного на відстань, що не перевершує 2t, в суперечності з початковою властивістю коду мати всі свої слова на відстані не меншому 2t + 1 один від одного. Таким чином, для упевненого декодування в умовах перешкод потрібно уміти будувати коди з великою кодовою відстанню, яка визначається як мінімум попарних відстаней слів коду в метриці Хемінга. Оскільки безліч всіх слів довжини п цією властивістю, очевидно, не володіє, слід виділяти деякі підмножини з вказаної множини. Звичайно безліч всіх послідовностей з 0 і 1 довжини n вважають лінійним простором над полем з двох елементів з метрикою (нормою) Хемінга; число одиниць в слові називають нормою цього слова. Серед таких підмножин особливе місце займають коди, які замкнуті по відношенню до операції суми, так звані лінійні коди. Лінійний (n, k) - код є лінійний підпростір розмірності до в множині всі 0-1 рядків довжини п, тобто в просторі Еn. При цьому матриця з до базисних векторів коду називається матрицею коду, що породжує, а матриця з n-k базисних векторів подвійного коду (тобто ортогонального доповнення до En) називається перевірочною матрицею. Природно вважати до символів (n, k) - коду основними, а інші n-k- перевірочними, необхідними лише для визначення правильності передаючого повідомлення. Величинами називається швидкістю передачі.

Як багато може бути кодових слів в коді довжини n, у якого кодова відстань d, тобто яка величина А(n,d)? Відомі межі Хемінга, Джонсона, оцінюючі величину А(n,d). Так, межа Хемінга встановлює:

де

(17)

Ця межа ще називається межею сферичної упаковки, оскільки рівність (17) Досягається у тому випадку, коли непересічні кулі радіусу t з центрами кодових словах цілком заповнюють всю безліч n - буквенних слів. Такі коди ще називаються вчиненими або щільно упакованими.

Межа Джонсона А(n,d) 2d/(2d - n), d> n/2 може бути використана для оцінки потужності коду, що складається із слів ваги Лисиць кодовою відстанню d. га оцінка А(n,k,d) d/(2n2+dn-2nk), за умови, що знаменник дробу позитивний, 2n2+dn-2nk>0. Оцінки типу межі Джонсона неодноразово уточнювалися різними авторами, оскільки остаточного результату до теперішнього часу не одержано. Такі оцінки мають значення при побудові кодів з сильними коректуючими властивостями, оскільки указують межі можливого. Наступна оцінка уточняє оцінку Джонсона.

Теорема 5. Хай задані t слів довжини s ваги L= s(l-ά)/2, де ά (0,1). Нехай

D={di}, безліч попарних відстаней між кодовими словами. Хай середнє арифметичне всіх попарних відстаней між перерахованими t словами. Тоді:

Доведення.

Хай в матриці коду hi, - число одиниць в і-ому стовпці.

Тоді

і, отже

Якщо

Застосуємо тепер ці міркування до нового коду, який виходить з виходящого попарним складанням різних стовпців. Тоді рядки нового коли матимуть вагу L(s - L), попарні відстані нового коду будуть di(s - di). Застосовуючи аналогічні міркування, маємо:

Тоді:

і остаточно:

Якщо , то:

Приведений математичний апарат виявляє собою дієвий інструментарій для дослідження зовнішньополітичних процесів, що розглядаються як фінітних функцій на просторі індикаторів.

Висновок

Розвиток методології економіко-математичного моделювання має довгу історію. Становлення двох по суті різних наукових дисциплін - економіки і математики - протягом багатьох століть проходило по власних законах, що відображали природу цих дисциплін, і одночасно стикаючись один з одним.

Вживання математичних методів в дослідженні зовнішньополітичних процесів є привабливим науковим інструментарієм. Ідея вивчати явище по його образу (моделі) властива не тільки політиці - ця ідея давно і грунтовно знайшла своє вживання в різних областях наукового знання.

Список літератури

Ашманов С. А. Введення в математичну економіку. М.: Наука 1984.

Петров Е. Г., Новожилова М. В.. Методи і засоби прийняття рішень у соціально – економічних системах: Навчальний посібник./ За ред. Е. Г. Петрова. – К.: Техніка, 2004 – 256с.

Замков О. О., Товстопятенко А. В. Математичні методи в економіці: посібник М.: Дис. 1997.

Характеристики

Тип файла
Документ
Размер
3 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее