183394 (743540), страница 8

Файл №743540 183394 (Коррупция как объект математического моделирования) 8 страница183394 (743540) страница 82016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Так как max[1 - h - pe (t + 1)С,0] 0, то возможная стоимость взятки для молодого бюрократа не больше, чем у старого бюрократа. Это говорит о том, что последний более чувствителен к коррупции, чем молодой, поскольку старого бюрократа раньше не наказывали.

ПустьW0(t + 1) = 1 – pe(t + 1)C. Молодой бюрократе честностью h в t предполагает, что он примет взятку в t + 1 тогда и только тогда, когда

W0(t + 1) h (41)

Если (41) удовлетворено,то (40) эквивалентно

(42)

Введем обозначение:

(43)

Молодой бюрократ с честностью h примет взятку тогда и только тогда, когда

(44)

Если (41) не удовлетворено, то молодой бюрократ в t не предполагает принимать взятку в период t + 1. Тогда (40) эквивалентно 1 – h – p(t)C 0.

Пусть Wy(t) = 1 - p(t)C. Молодой бюрократ с честностью h примет взятку тогда и только тогда, когда

Wy(t) h (45)

При этом тогда и только тогда, когда p(t) > pe(t +1). Доказывается, что при p(t) > pe(t +1) доля молодых коррумпированных бюрократов в t задается функцией , а при p(t) pe(t +1) доля молодых коррумпированных бюрократов в t задается . Предполагается, что pe(t) p(t - 1) тогда и только тогда, когда p(t) p(t - 1), другими словами, предположение относительно ожидаемого изменения вероятности проверки оказывается верным. Доказывается, что при pe(t) p(t - 1) пропорция страха коррумпированных бюрократов в t задается (1 - р)(t - 1)F(W0(t)), а при pe(t) < p(t- 1) пропорция старых коррумпированных бюрократов в t задается .

Пусть B(t) - доля коррумпированных среди всех бюрократов поколения в момент времени t. B(t) является средним арифметическим между долями старых и молодых коррумпированных бюрократов, которые принимают взятки в момент t. Эта величина используется для измерения уровня коррупции в экономике в момент времени t. Предыдущие результаты могут быть представлены следующими четырьмя случаями:

(46)

Если все пропорции F(•) меньше единицы, то соответствующие выражения для значений W можно подставить в выражения (46). Тогда получим

(47)

где функции J1 и J2 зависят от p(t - 1), p(t), С, pe(t), pe(t + 1). Из (47) следует, что B(t) зависит от вероятностей проверки, которые определяются ниже.

При более высоком B(t) издержки на эффективную проверку выше. Для включения этого обстоятельства в модель делаются следующие предположения.

Каждый период правительство тратит R единиц ресурсов на проверку. Ресурсы, не­обходимые для эффективной проверки одного человека в момент времени t, есть r(t). Предполагается, что

r(t) = 1/(m-nB(t)), где m > n > 0. (48)

Пусть N - общее число бюрократов. Тогда

p(t) = А – kB(t), где A = Rm/N, k=Rn/N. (49)

Подставляя (49) в (47), можно получить закономерность изменения B(t). Сделанные предположения позволяют показать, что, задавая R, можно получить несколько устой­чивых равновесных уровней коррупции. Пусть первоначальный уровень коррупции в экономике мал. Из-за небольших издержек на проверку каждого человека, R может быть потрачено на большее количество людей. Следовательно, меньше людей выбе­рут стать коррумпированными. Аналогично и в обратном случае при высоком перво­начальном уровне коррупции.

Рис. 2. Фазовая диаграмма Рис. 3. Фазовая диаграмма

Предполагается также, что 1 > A > k >0, C > 1 > AC, f > 1. Как показано в [78], существует три стационарных, равновесных уровня коррупции В* = B(t) для всех t. Вследствие (48), p(t) = р* для всех t, где р* - вероятность про­верки, соответствующая В*. Стационарные уровни возможны только тогда, когда p(t) pe(t+1) и p(t-1) pe(t). Именно этот случай рассматривается ниже. Поскольку F(WY(t)) = F(W0(t)) =f(1 -p(t))C, если f(1-p(t))C 1, и F(WY(t)) = F(W0(t)) = 1, если f(1-р(t)С)>1,то

Решение можно представить на фазовой диаграмме. На рис. 2 изображена диа­грамма изменения B(t) от В(t - 1). Кривая ABCD соответствует (50). Она пересекает линию ОМ (эта линия имеет наклон 45%) в двух точках, B и С. Прямая DF, пред­ставляющая уравнение (51), пересекает линию ОМ в точке Е. Таким образом, сущест­вует три точки равновесия и легко может быть показано, что только в точках В и Е оно является устойчивым.

Если изменить предположение о соотношении вероятностей проверки и их ожидае­мых значениях, то, как показано в [78] (с помощью численного моделирования), вместо рис. 2 получаем рис. 3. Из рисунка видно, что если первоначальное значение переменной B(t - 1) больше, чем В2, или если В(t - 1) настолько мало, что B(t) выше точки С, то B(t) сойдется к точке Е. В других случаях B(t) сойдется к точке В.

В [78] исследуется, как зависят равновесные уровни коррупции от параметров модели, и подчеркивается разница между малыми и значительными изменениями в параметрах, так как их последствия отличаются.

Алгебраически более удобно иметь дело со стационарной вероятностью проверки р*, чем с В*. По уравнению (49) р* связана со стационарным равновесным уровнем коррупции В* следующим уравнением:

p* = A – kB* (52)

Из рис. 3 следует, что есть три возможных состояния равновесия для B(t). Это - В, С и D. Первые два определяются из уравнения

Cfkp*2 – [fk(2C+1)]p* +(2fk – A) = 0 (53)

Легко видеть из (52), что B* отрицательно связан с P* , следовательно, результа­ты, получаемые из последнего уравнения, можно интерпретировать следующим обра­зом. Если штраф С или ресурсы на проверку R растут незначительно, то В* падает. С другой стороны, если средний уровень честности h в экономике падает, то f и В* повышаются, что представляется естественным.

Так как кроме точки D точка Е также является стационарным решением, интересно исследовать ее зависимость от параметров. Из (51) следует, что в точке Е

B* = (2 – A)/(2 – k) (54)

Этот уровень В* не зависит от размера штрафа С. Однако когда ресурсы на про­верку R повышаются, то и A, и k растут в одинаковых пропорциях, поэтому В* пада­ет. Следовательно, для экономики с высоким уровнем коррупции изменения R могут снизить уровень коррупции, а небольшие изменения С- не могут.

Особый интерес вызывает вопрос о переходе экономики с одного уровня коррупции на другой. Исследование такого вопроса говорит о том, что когда общество стано­вится более снисходительным к коррумпированным бюрократам, то возможно резкое повышение уровня коррупции. Более того, однажды появившись, высокий уровень коррупции остается, даже если параметры ограничительной схемы вернутся на преж­ний уровень. Это объясняет существование обществ с резко отличающимися уровнями коррумпированности и одинаковыми ограничительными схемами. Интуитивное объяснение этого факта состоит в том, что, однажды возникнув, коррупция требует более высоких затрат на проверку и сдерживание. Усилия правительства становятся менее эффективными.

Кроме того, из модели следует, что из-за возможности перехода от одного равновесного состояния к другому иногда тяжелая ограничительная схема, казавшаяся неоптимальной в короткий период, становится оптимальной в долгосрочный. В то же время в ряде случаев грубая схема (например, введение высоких штрафов С) может вызвать обратный эффект, переведя экономику, находящуюся на низком уровне коррупции (в точке В), на высокий уровень (в точку E). Это произойдет, если коррупция "проскочит" в какой-то момент неустойчивое стационарное состояние (точку C) из-за колебаний, возникших в процессе перехода.

Сказанное выше является примером тех многочисленных выводов, которые выте­кают из детального анализа этой модели.

    1. Модель обмена популярности на взятку.

Проблемы стационарных уровней, дополняемых реально наблюдаемыми эффектами колебаний уровней коррупции, рассматриваются в рамках макроподхода в работе Дж. Фейхтингера и Ф. Уирла [79]. Как отмечают сами авторы этой статьи, ее цель-объяснить несколько фактов, наблюдаемых при "рациональной" политической деятельности, в частности изучить динамику коррупции и возможность возникновения циклов и неустойчивости в рацио­нальном поведении политических деятелей. В работе объясняется один из часто встречающихся фактов - частая смена периодов походов против коррупции периодами молчаливого допущения взяточничества. Ими предлагается динамическая модель оптимального поведения политика, функция полезности которого зависят от народной поддержки (популярности), с одной стороны, и уровня личных доходов (в том числе взяток), - с другой. Решением экстремальной задачи является траектория в пространстве "коррупция - популярность". В работе анализируются свойства устойчи­вости оптимальных стратегий и показывается, что равновесие может быть седловой точкой (достигнутое либо монотонно, либо через затухающие колебания), кроме того, могут иметь место циклические колебания и различные виды неустойчивости. Также в работе доказывается существование устойчивых предельных циклов, изучается влия­ние параметров модели (важность популярности, память людей, ставка дисконти­рования) на динамику коррупции и ее устойчивость.

В модели рассматривается агрегированный исполнитель - политик, Его функция полезности в каждый момент времени зависит от двух "частных" функций полезности V(P) и U(c). Функция полезности V(P) фиксирует все виды выгод от популярности Р; V такова, что может стать сильно отрицательной, если общественное одобрение его деятельности падает ниже некоторого порога. Функция полезности U(c) зависит от объема взяток с. Коррупция измеряется параметром К. Предполагается, что обе функ­ции убывающие и вогнутые: U'>0; U" 0: V" 0. Взятки с могут стать отрицательными, когда политик тратит деньги в борьбе за народную поддержку, выступая против широко распространенной коррупции.

Модель представлена в виде задачи оптимального управления следующего вида:

(55)

(56)

(57)

Максимизация полезности в (55) проводится при двух динамических ограничениях. Во-первых, популярность (P(t))- динамический процесс (согласно (56)), при этом Р становится отрицательным, когда появляется сообщение о коррупции. Однако общест­венность не реагирует на единичные проявления коррупции потому, что бытует общественное мнение о неизбежности некоторого уровня коррупции, но реагирует на массу, поток накопленных сообщений о коррупции, К. Такое накопление сведений о коррупции согласно дифференциальному уравнению (57) предусматривает, что люди, на чью поддержку политики должны рассчитывать, имеют склонность забывать (снижающуюся по экспоненте память ( 0)).

Функция g(P) может представлять произвольный, но вогнутый (g" < 0) процесс диффузии, например, по логистическому закону. Процесс диффузии предполагает, что слова, направленные на поддержание положительной репутации, являются определяю­щим фактором. Функция f(K) измеряет потерю популярности, зависящую от памяти о (накоплении) наблюдаемой коррупции, К. Принимается, что f' > 0 и f" 0.

Воздействие, выраженное функцией f, зависит от нескольких параметров, например от местной культуры, подавления свободы и заинтересованности некоторых кругов в раскрытии коррупции. Система (55)-(57) предусматривает, что избиратели или насе­ление большинством голосов решают проблему компетентности и честности поли­тических деятелей, ограничиваясь рациональным способом; более точно, не дально­видным способом, а с оглядкой назад. Это ограничение в виде предположения рациональности, совершенно верно, потому что "рациональные" избиратели будут всегда минимально информированными из-за своей "лени" и потому что сбор инфор­мации для них — дорогое "удовольствие".

Применяя стандартный подход – принцип максимума Понтрягина, далее решаем экстремальную задачу и получаем оптимальные траектории K(t), c(t), P(t). Их исследо­вание проводится традиционными методами анализа динамических систем. Авторы работы наряду с математическими результатами, подтверждающими существование различных видов траекторий, делают ряд институциональных выводов. Правящий класс (диктаторы, политики, бюрократы) рассматривают взятки как свой потреби­тельский товар. Очевидно, такого рода "потребление" не нравится общественности. В настоящее время любое правительство, даже диктаторское, ограничено условиями популярности, лежащими часто ниже таких же условий для демократических режимов. Главный результат работы состоит в том, что эти институциональные ограничения. выражающиеся в требовании высокой популярности, обеспечивают также и устой­чивый уровень коррупции. Различие в требованиях "высокого" и "низкого" уровня популярности (т.е. "демократия" и "диктатура") влияет на обеспечение устойчивости, но не влияет на собственно уровень коррупции, который может быть высоким в обоих случаях. Даже при устойчивом равновесии может быть рационально (для политиков) достигнуть этого равновесия не монотонно, а через затухающие циклы. Более того, комплексные - циклические и неустойчивые - меры могут быть рациональны для правительств, которые сталкиваются только со слабыми ограничениями популярности. Это может объяснять (до некоторой степени) тот факт, что в конце концов демо­кратия сопровождается некоторым уровнем коррумпированности, даже большим, чем при диктатуре [79].

    1. Модель коллективной репутации.

Почему же так сложно бороться с корруп­цией? Этот вопрос освещается в ряде работ по моделированию таких эффектов, как превращение отдельных коррупционных сделок в "традицию" общества [77]. Ниже кратко рассмотрим одну из этих работ – модель Я. Тирола по образованию репутации группы [76]. Он вводит такое понятие, как коллективная репутация группы, играющее важную роль в экономике и общественных науках. Некоторые фирмы получают значительные ренты благодаря своей репутации производителей высококачественных продуктов. В работе рассматривается коллективная репутация как результат, завися­щий от истории группы. По определению, коллективная репутация группы отражает среднее поведение членов группы в прошлом. Это означает, что:

  • коллективная репутация группы будет хорошей, если репутация ее членов пози­тивная;

  • в противоположность поведению группы, поведение индивида в прошлом просле­живается не полностью;

  • следовательно, прошлое поведение группы используется для предсказания инди­видуального поведения ее членов, и на благосостояние каждого члена группы и мо­тивы его действий влияет репутация группы;

  • поведение новых членов группы зависит от прошлого поведения предшествен­ников.

В модели хозяин (покупатель услуги) заключает контракт с исполнителем (продав­цом услуги), только если уверен, что тот не замешан в коррупции. Рассматривается экономика, в которой исполнителей в момент времени t помнят до даты t + 1 с вероятностью (0; 1). Численность популяции считается постоянной. Это - модель состязания. В каждый момент t любой исполнитель состязается с новым хозяином. Хозяин решает, предложить ли исполнителю задачу 1 или 2. Задача 1 продуктивна. Задача 2 менее продуктивна, но, по мнению хозяина, более подходит для исполнителя, решающего вступить в коррумпированные отношения. (Предполагается, что хозяину всегда лучше предложить исполнителю задачу 2, чем уволить его совсем.)

Поступив на работу, исполнитель решает, "обманывать" ли ему хозяина. Прибыль хозяина за период от первой задачи - Н, если исполнитель честный, и D - если нет. Соответственно обозначим прибыли от второй задачи –h и d. Чтобы заставить хозяина делать нетривиальный выбор, предполагается, что коррупция при выполнении задачи 1 влияет на прибыль больше, чем при выполнении задачи 2, т.е. Н > h d > 0. Чтобы обеспечить оптимальные условия найма исполнителя, предполагается, что d 0.

Честные исполнители существуют в пропорции , нечестные - в пропорции , а оппортунисты - в пропорции , где + + = 1. Пропорции эти одинаковы для всей популяции. Честные и нечестные исполнители ведут себя предопределенным образом, поэтому фокус анализа - на поведении оппортунистов. Их решение зависит от при­были от коррупции и потерь в репутации. Их прибыль при решении задач 1 и 2 (даже если они не будут обманывать) - В и b соответственно, причем В > b 0. В обеих задачах дополнительная прибыль от коррупции G > 0. При этом роль антикорруп­ционной кампании не моделируется. Иначе G могла быть ожидаемой прибылью от коррупции, куда включена вероятность применения законных санкций. Кроме того, в модели учитывается дисконтная ставка исполнителей.

Характеристики

Тип файла
Документ
Размер
2,41 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее