183326 (743430), страница 2

Файл №743430 183326 (Определение оптимального плана замены оборудования) 2 страница183326 (743430) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Область возможных состояний системы

Графическое изображение перехода системы S

Рис.2.1

Совокупность состояний, в которые может переходить система, называется областью возможных состояний. В зависимости от числа параметров, характеризующих состояние системы, область возможных состояний системы

может быть различной. Пусть, например, состояние системы S характеризуется одним параметром, - координатой x . В этом случае изменение координаты, если на нее наложены некоторые ограничения, изобразится перемещением точки S по оси Оx или по ее участку. Следовательно, областью возможных состояний системы является совокупность значений x, а управлением –закон движения точки S из начального состояния S0 в конечное Sk по оси Ox или ее части (рис.2.1).

Если состояние системы S характеризуется двумя параметрами (x1 и x2 ), то областью возможных состояний системы служит плоскость x1Ox2 или ее часть, а управление изобразится линией на плоскости, по которой точка S перемещается из S0 в Sk (рис. 2.2).

х2

S0


S Sk

0 х1

Управление системы S в графическом изображении

рис.2.2

В общем случае, когда состояние системы описывается n параметрами xi (i=1,2,…,n), областью возможных состояний служит n-мерное пространство, а уравление изображается перемещением точкиS из какой-то начальной области S0 в конечную Sk по некоторой “траектории” этого пространства.

Таким образом, задаче динамического программирования можно дать следующую геометрическую интерпретацию. Из всех траекторий, принадлежащих области возможных состояний системы и соединяющих области S0 и Sk , необходимо выбрать такую, на которой критерий W принимает оптимальное значение. [7].

Чтобы рассмотреть общее решение задач динамического программирования, введем обозначения и сделаем для дальнейших изложений предположения.

Будем считать, что состояние рассматриваемой системы S на K-м шаге (k=1,n) определяется совокупностью чисел X(k) =(x1 (k) , x2(k) ,…, xn(k) ), которые получены в результате реализации управления uk, обеспечившего переход системы S из состояния X(k-1) в состояние X(k). При этом будем предполагать, что состояние X(k) , в которое перешла система S , зависит от данного состояния

X(k-1) и выбранного управления uk и не зависит от того, каким образом система S пришла в состояние X(k-1) .

Далее будем считать, что если в результате реализации k-го шага обеспечен определенный доход или выигрыш, также зависящий от исходного

состояния системы X(k-1) и выбранного управления uk и равный Wk(X(k-1), uk ), то общий доход или выигрыш за n шагов составляет

n

F=∑ Wk(X(k-1), uk ). (2.1)

k=1

Таким образом, задача динамического программирования должна удовлетворять два условия. Первое условие обычно называют условием отсутствия последействия, а второе – условием аддитивности целевой функции задачи.

2.2 Информационно-методическое обеспечение метода

Выполнение для задачи динамического программирования первого условия позволяет сформулировать для нее принцип оптимальности Беллмана. Прежде чем сделать это, надо дать определение оптимальной стратегии управления. Под такой стратегией понимается совокупность управлений U*=(u1*, u2*, …, un*), в результате реализации которых система S за n шагов переходит из начального состояния X(0) в конечное X(k) и при этом функция (2.1) принимает наибольшее значение.

Принцип оптимальности: какое бы не было состояние системы перед очередным шагом, надо выбрать управление на этом шаге так, чтобы выигрыш на данном шаге плюс оптимальный выигрыш на всех последующих шагах был максимальным.

Отсюда следует, что оптимальную стратегию управления можно получить, если сначала найти оптимальную стратегию управления на n-м шаге, затем на двух последних шагах, затем на трех последних шагах и т.д., вплоть до первого шага. Таким образом, решение рассматриваемой задачи динамического программирования целесообразно начинать с определения оптимального решения на последнем, n-м шаге. Для того чтобы найти это решение, очевидно, нужно сделать различные предположения о том, как мог окончиться предпоследний шаг, и с учетом этого выбрать управление un0 , обеспечивающее максимальное значение функции Wn(X(n-1), un ). Такое управление un0 выбранное при определенных предположениях о том, как окончился предыдущий шаг, называется условно оптимальным управлением. Следовательно, принцип оптимальности требует находить на каждом шаге условно оптимальное управление для любого из возможных исходов предшествующего шага.

Чтобы это можно было осуществить практически, необходимо дать математическую формулировку принципа оптимальности. Для этого введем некоторые дополнительные обозначения. Обозначим через Fn(X0) максимальный доход, получаемый за n шагов при переходе системы S из начального состояния X(0) в конечное состояние X(k) при реализации оптимальной стратегии управления U=(u1, u2, …, un), а через Fn-k(X(k)) –максимальный доход, получаемый при переходе из любого состояния X(k) в конечное состояние X(n) при оптимальной стратегии управления на оставшихся n-k шагах. Тогда:

Fn(X0)=max[W1(X(0), u1)+…+ Wn(X(n-1), un)]; (2.2)

Uk+j

Fn-k(X(k))=max[Wk+1(X(k), uk+1)+Fn-k-1(Xk+1))](k=0, n-1). (2.3)

Uk+1

Последнее выражение представляет собой математическую запись принципа оптимальности и носит название основного функционального уравнения Беллмана или рекуррентного соотношения. Используя данное уравнение можно найти решение задачи динамического программирования.

Полагая k=n-1 в рекуррентном соотношении (2.3) , получим следующее функциональное уравнение:

F1(X(n-1)=max[Wn(X(n-1), un)+F0(X(n))]. (2.4)

un

В этом уравнении F0(X(n)) будем считать известным. Используя теперь уравнение (1.4) и рассматривая всевозможные допустимые состояния системы S на (n-1)-м шаге X1(n-1), X2(n-1), …, Xm(n-1), …, находим условные оптимальные решения

un0(x1(n-1)), un0(x2(n-1)),…, un0(xm(n-1)),…

и соответствующие значения функции (2.4)

F10 (X1(n-1)), F10 (X2(n-1)), …, F10 (Xm(n-1)),… .

Таким образом, на n-м шаге находим условно оптимальное управление при любом допустимом состоянии системы S после (n-1)-го шага. То есть, в каком бы состоянии система ни оказалась после (n-1)-го шага, будет известно, какое следует принять решение на n-м шаге. Известно также и соответствующее значение функции (2.4). Рассмотрим функциональное уравнение при k=n-2:

F2(X(n-1))=max[Wn-1(X(n-2), un-1)+F1(X(n-1))]. (2.5)

Un-1

Для того чтобы найти значения F2 для всех допустимых значений X(n-2), необходимо знать Wn-1(X(n-2), un-1) и F1(X(n-1)). Что касается значений F1(X(n-1)), то они уже определены.Поэтому нужно произвести вычисления для Wn-1(X(n-2), un-1) при некотором отборе допустимых значений X(n-2) и соответствующих управлений un-1 . Эти вычисления позволят определить условно оптимальное управление u0n-1 для каждого X(n-2) . Каждое из таких управлений совместно с уже выбранным управлением на последнем шаге обеспечивает максимальное значение дохода на двух последних шагах.

Последовательно осуществляя описанный выше итерационный процесс, дойдем до первого шага. На этом шаге известно, в каком состоянии может находиться система. Поэтому уже не требуется делать предположений о допустимых состояниях системы, а остается лишь только выбрать управление, которое является наилучшим с учетом условно оптимальных управлений, уже принятых на всех последующих шагах.

Таким образом, в результате последовательного прохождения всех этапов от конца к началу определяется максимальное значение выигрыша за n шагов и для каждого из них находим условно оптимальное управление.

Чтобы найти оптимальную стратегию управления, то есть определить искомое решение задачи, нужно теперь пройти всю последовательность шагов, только на этот раз от начала к концу. А именно: на первом шаге в качестве оптимального управления u1* возьмем найденное условно оптимальное управление u10. На втором шаге найдем состояние X1* , в которое переводит систему управление u1*. Это состояние определяет найденное условно оптимальное u20 , которое теперь считается оптимальным. Зная u2*, находим X2*, а значит, определяем u3* и т.д. В результате этого найдется решение задачи, то есть максимально возможный доход и оптимальную стратегию управления U*, включающую оптимальные управления на отдельных шагах: U*= (u1*, u2*, …, un*).

Итак, из нахождения решения задачи динамического программирования видно, что этот процесс является довольно громоздким. Поэтому более сложные задачи решают с помощью ЭВМ. [1].

Динамическую задачу по замене оборудования возможно также решить и графическим методом. На оси Х откладывают номер шага (к). на оси У – возраст оборудования (t). Точка (к-1;t) на плоскости соответствует началу К-ого шага по эксплуатации оборудования в возрасте t лет.

Л юбая траектория переводящая точку S(k-1;t) из состояния S0 S, . Состоит из отрезков, то есть из шагов соответствующих годам эксплуатации. Нужно выбрать такую траекторию при которой затраты на эксплуатацию будут минимальны. Если известны зависимость производительности установленного на предприятии оборудования от времени его использования R(t) и зависимость затрат на ремонт оборудования при различном времени его использования S(t) и затраты связанные с приобретением нового оборудования, то показателем эффективности в этом случае является прибыль которая максимизируется.

3. РАСЧЕТ ПОКАЗАТЕЛЕЙ ЭКОНОМИКО-МАТЕМАТИЧЕСКОЙ МОДЕЛИ И ЭКОНОМИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ

В этой задаче в качестве системы S выступает оборудование. Состояние этой системы определяются фактическим временем использования оборудования (его возрастом) t, то есть описываются единственным параметром t.

В качестве управлений выступают решения о замене и сохранении оборудования, принимаемые в начале каждого года. Обозначим через Xc решение о сохранении оборудования, а через Xз –решение о замене оборудования. Тогда задача состоит в нахождении такой стратегии управления, определяемой решениями, принимаемыми к началу каждого года, при которой общая прибыль предприятия за восемь лет является максимальной.

Эта задача обладает свойствами аддитивности и отсутствия последействия. Следовательно, ее решение можно найти с помощью алгоритма, реализуемого в два этапа. На первом этапе при движении от начала 10-го года периода к началу 1-го года для каждого допустимого состояния оборудования найдем условное оптимальное управление (решение), а на втором этапе при движении от начала 1-го года периода к началу 10-года из условных оптимальных решений для каждого года составим оптимальный план замены оборудования на десять лет.

Для определения условных оптимальных решений сначала необходимо составить функциональное уравнение Беллмана. Так как было предположено, что к началу k-го года (k=1,2,3,4,5,6,7,8,9,10) может приниматься только одно из двух решений – заменять или не заменять оборудование, то прибыль предприятия за k-ый год составит:

Характеристики

Тип файла
Документ
Размер
278 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее