work metod (743409), страница 2
Текст из файла (страница 2)
После определения промежутка, в котором задача (60)-(62) имеет один и тот же оптимальный план или неразрешима, выбираем новое значение параметра t, не принадлежащее найденному промежутку, и находим решение полученной задачи линейного программирования. При этом решение новой задачи ищем с помощью действенного симплекс-метода. Продолжая итерационный процесс, после конечного числа шагов получаем решение задачи (60)-(62).
Итак, процесс нахождения задачи (60)-(62) включает следующие основные этапы:
10. Считая значение параметра t равным некоторому числу
, находят оптимальный план или устанавливают неразрешимость полученной задачи линейного программирования.
20. Находят значения параметра
, для которых задача (60)-(62) имеет один и тот же оптимальный план или неразрешима. Эти значения параметра t исключают из рассмотрения.
30. Выбирают значения параметра t из оставшейся части промежутка
и устанавливают возможность определения нового оптимального плана находят его двойственным симплекс-методом.
40. Определяют множество значений параметра t, для которых задача имеет один и тот же новый оптимальный план или неразрешима. Вычисления проводят до тех пор, пока не будут исследованы все значения параметра
.
2.66. Для каждого значения параметра
найти максимальное значение функции
при условиях
Р е ш е н и е . Считая значение параметра t в системе уравнений (81) равным нулю, находим решение задачи (80)-(82) (табл. 2. 41).
Таблица 2.41
| i | Базис | Сб | Р0 | 3 | -2 | 5 | 0 | -4 |
| Р1 | Р2 | Р3 | Р4 | Р5 | ||||
| 1 | Р3 | 5 | 12+t | 1 | 1 | 1 | 0 | 0 |
| 2 | Р4 | 0 | 8+4t | 2 | -1 | 0 | 1 | 0 |
| 3 | Р5 | -4 | 10-6t | -2 | 2 | 0 | 0 | 1 |
| 4 | 20+29t | 10 | -1 | 0 | 0 | 0 | ||
| 1 | Р3 | 5 | 7+4t | 2 | 0 | 1 | 0 | -½ |
| 2 | Р4 | 0 | 13+t | 1 | 0 | 0 | 1 | ½ |
| 3 | Р2 | -2 | 5-3t | -1 | 1 | 0 | 0 | ½ |
| 4 | 25+26t | 9 | 0 | 0 | 0 | ½ |
Как видно из табл. 2.41,
при t =0 есть оптимальный план задачи. Однако
является оптимальным планом и тогда среди его компонентов не окажется отрицательных чисел, т.е. при 5-3t
0; 7+4t
0;
13+t
или при
Таким образом, если
то
- оптимальный план задачи (80)-(82), при котором
Исследуем теперь, имеет ли задача оптимальные планы при
. Если
, то 5-3t<0 и следовательно, X=(0,5 – 3t, 7+4t, 13+t, 0) не является планом задачи. Поэтому при
нужно перейти к новому плану, который был в то же время оптимальным. Это можно сделать в том случае, когда в строке вектора Р2 имеются отрицательные числа
. В данном случае это условие выполняется. Поэтому переходим к новому опорному плану, для чего введем в базис вектор Р1 и исключаем из него вектор Р2 (табл. 2.42).
| i | Базис | Сб | Р0 | 3 | -2 | 5 | 0 | -4 |
| Р1 | Р2 | Р3 | Р4 | Р5 | ||||
| 1 | Р3 | 5 | 17+2t | 0 | 2 | 1 | 0 | ½ |
| 2 | Р4 | 0 | 18-2t | 0 | 1 | 0 | 1 | 1 |
| 3 | Р1 | 3 | -5+3t | 1 | -1 | 0 | 0 | -½ |
| 4 | 70-t | 0 | 9 | 0 | 0 | 5 |
Как видно из табл. 2.42,
-оптимальный план задачи для всех t, при которых
Следовательно, если
является оптимальным планом исходной задачи, причем
.
Если t>17/2, то
не является планом задачи, так как третья компонента 17 – 2t есть отрицательное число. Поскольку среди элементов 1-й строки табл. 2.42 нет отрицательных при t>17/2 исходная задача неразрешима.
Исследуем теперь разрешимость задачи при t< -7/4. В этом случае Х= (0,5 -3t, 7+4t, 13+t, 0) (см. табл.2.41) не является планом задачи, так как третья компонента 7+4t есть отрицательное число. Чтобы при данном значении параметра найти оптимальный план (это можно сделать, так как в строке вектора Р3 стоит отрицательное число -1/2), нужно исключить из базиса вектор Р3 и ввести в базис вектор Р5 (табл. 2.43).
Таблица 2.43
| i | Базис | Сб | Р0 | 3 | -2 | 5 | 0 | -4 |
| Р1 | Р2 | Р3 | Р4 | Р5 | ||||
| 1 | Р5 | -4 | -14-8t | -4 | 0 | -2 | 0 | 1 |
| 2 | Р4 | 0 | 20+5t | 3 | 0 | 1 | 1 | 0 |
| 3 | Р2 | -2 | 12+t | 1 | 1 | 1 | 0 | 0 |
| 4 | 32+30t | 11 | 11 | 1 | 0 | 0 |
Как видно из табл. 2.43,
является оптимальным планом задачи для всех значений параметра t, при которых
Таким образом, если
, то задача (80)-(82) имеет оптимальный план
, при котором
Из табл. 2.43 так же видно, что при t<4 задача неразрешима, поскольку в строке вектора Р4 нет отрицательных элементов.
Итак, если
, то задача не имеет оптимального плана; если
оптимальный план, а
если
, то
- оптимальный план, а
если
, то
- оптимальный план, а
если
, то задача неразрешима.











