166719 (740408), страница 2
Текст из файла (страница 2)
В аналогичных условиях скорость гомополиконденсации диметилолмочевины очень низка. Она также взаимодействует с мочевиной и монометилолмочевиной.
Предполагается, что основная реакция, приводящая к мочевино-формальдегидным смолам, – бимолекулярная, и скорость её пропорциональна концентрации водородных ионов. Далее приведены вероятные схемы образования мочевино-формальдегидных смол.
По-видимому, наиболее вероятна последняя схема, предусматривающая наличие в структуре полимера кислородных мостиков, присутствием которых можно объяснить выделение формальдегида при хранении и эксплуатации изделий из мочевино-формальдегидных смол.
Направление реакции мочевины с формальдегидом зависит также от температуры. Повышение её выше 40 (оптимальная температура для получения метилол-мочевины) способствует образованию нежелательных продуктов – метиленмочевин. Вероятность получения последних существует и в том случае, когда процесс начинают в условиях, благоприятных для синтеза метилолмочевин; это связано с изменением рН среды в ходе реакции. Так, мочевина, способная образовывать с кислотами нестойкие соли, связывает муравьиную кислоту, всегда содержащуюся в формалине. В результате этого при добавлении мочевины в раствор формалина рН реакционной смеси повышается. Однако по мере расходования мочевины кислота высвобождается и рН понижается. Кроме того, в условиях реакции муравьиная кислота образуется из формальдегида (реакция Канниццаро – Тищенко):
2СН2О + NaOH CH3OH + HCOONa
По этой причине сначала получают метилольные производные мочевины, поддерживая нейтральную или слабощелочную среду (рН 7–8), а затем, не выделяя метилолмочевины из раствора, в слабокислой среде (рН 3–6,5) осуществляют их поликонденсацию. Слабокислая среда предотвращает чрезмерное нарастание вязкости смолы и преждевременное гелеобразование (особенно на стадии сушки). Для регулирования рН среды используют буферные вещества (ацетат натрия и его смесь с лимонной кислотой, карбонат аммония и другие), а также уротропин. При нагревании мочевины и формальдегида в присутствии последнего раствор с течением времени приобретает ту кислотность, которую он имел до прибавления уротропина. По-видимому, уротропин образует с муравьиной кислотой буферные соли, разрушающиеся при нагревании. Проведение реакции в водных средах препятствует отщеплению воды от метилолмочевин, что предотвращает их переход в метиленмочевины.
3 Технология производства
Механизм образования мочевино-формальдегидных смол сложен. Всегда в качестве начального продукта образуется моно- и диметилолмочевина, которые при дальнейшей поликонденсации в слабокислой среде дают линейные полимеры.
Суммарно реакцию можно представить так:
СН2О+nCO(NH2)2 +(n+1)H2O
Технологический процесс производства мочевино-формальдегидной смолы осуществляется жидкофазным непрерывным методом и состоит из следующих основных стадий: подготовка сырья; приготовление реакционного раствора; конденсация в щелочной и кислой средах; нейтрализация и сушка смолы; доконденсация смолы с мочевиной; охлаждение, стабилизация и стандартизация смолы.
1, 13 — мерники едкого натра, 2 — теплообменник для формалина, 3—смеситель, 4—зубчатая дробилка, 5—емкость, 6, 11—циркуляционные насосы, 7 — первый реактор, 8 — холодильник, 9—второй реактор, 10—мерник кислоты, 12—выпарной аппарат (а—кипятильник, б—сепаратор), 14—сборник смолы, 15—реактор.
В смеситель 3 подаются 2%-ный раствор едкого натра из мерника 1 и формалин из прицеховой ёмкости. Формалин может охлаждаться в теплообменнике 2. Едкий натр загружается из расчёта получения в растворе рН 4,8 – 6,5. Мочевина измельчается на зубчатой дробилке 4 и подаётся в ёмкость 5, через которую прокачивается смесь формалина с едким натром из смесителя 3 циркуляционным насосом 6. Циркуляция ведётся до полного растворения мочевины, после чего определяется рН раствора, которая должна быть в пределах 7,5 – 8,5. Коэффициент рефракции должен быть 1,409 – 1,412. В реакционной смеси поддерживается температура 20 – 35 °C за счёт подачи воды или пара в змеевики смесителя 3.
Каждый агрегат для получения смолы имеет два смесителя: в одном готовится конденсационный раствор, а из другого раствор непрерывно расходуется.
Из смесителя 3 конденсационный раствор непрерывно подаётся в реактор 7 со скоростью, зависящей от производительности агрегата. Реактор снабжён рубашкой для нагрева и охлаждения, якорной мешалкой и холодильником 8. В реакторе 7 проводится конденсация в щелочной среде при 90 – 98 °C и непрерывном перемешивании. Пары конденсируются в холодильнике 8 и стекают обратно в реактор. При конденсации рН раствора снижается до 6,0 – 7,0. В начальной стадии процесса в нейтральной или слабощелочной среде образуется смесь моно- и диметилолмочевин, растворимых в воде. При дальнейшем нагреве происходит поликонденсация метилолмочевин, в результате образуется линейный полимер с метиленовыми связями и выделяется вода.
Из реактора 7 реакционный раствор непрерывно перетекает в реактор 9, в который также непрерывно поступает из мерника 10 серная кислота (0,5 – 1,0%-ный раствор). В реакторе поддерживается рН смеси 5,0 – 5,4 и температура 94 – 98 . Поликонденсация при непрерывном перемешивании продолжается до достижения вязкости смолы 14 – 15 по вискозиметру ВЗ-1. Образовавшиеся пары конденсируются в холодильнике 8 и стекают обратно в реактор 9.
Сконденсировавшаяся смола подаётся непрерывно из реактора 9 циркуляционным насосом 11 в выпарной аппарат 12, состоящий из кипятильника кожухотрубного а и сепаратора б. Для нейтрализации смолы и поддержания рН в пределах 7,0 – 8,0 в насос из мерника 13 непрерывно поступает 2%-ный раствор едкого натра. Кипятильник представляет собой трубчатый теплообменник, в трубках которого циркулирует смола, а в межтрубном пространстве – пар давлением 4 кгс/см2. Сепаратор – цилиндрический аппарат с коническим днищем и крышкой.
Сушка смолы проводится при рН 7,0 – 7,8, температуре 96 – 100 до достижения вязкости от 50 – 60 до 110 – 120 (по вискозиметру ВЗ-1). Пары, получаемые при сушке смолы, поступают в воздушный холодильник, конденсируются; надсмольная вода собирается в ёмкость, откуда перекачивается для дальнейшей обработки (выделения метанола и очистки воды от остатков формальдегида).
Упаренная смола поступает из сепаратора в сборник 14, в который подаётся 2%-ный раствор едкого натра для поддержания рН смолы в пределах 7,0 – 8,0. Из сборника 14 смола подаётся в реактор 15, в который поступает расчётное количество 64 – 67%-ного водного раствора мочевины, и при 60 – 85 происходит доконденсация смолы до достижения содержания формальдегида ниже 1,2%.
Из реактора 15 смола перекачивается в стандартизатор, где она стабилизируется 25%-ной аммиачной водой для повышения рН до 7,5–9,0 и увеличения жизнеспособности, и стандартизируется в результате перемешивания.
Из стандартизатора смола перекачивается насосами в складские ёмкости, из которых она поступает в железнодорожные цистерны и бочки.
4 Свойства мочевино-формальдегидных смол
Мочевино-формальдегидные смолы – твёрдые продукты белого цвета, легко растворимые в воде и нерастворимые в неорганических растворителях. Отверждение мочевино-формальдегидных смол ускоряется в присутствии кислотных катализаторов и с повышением температуры. В качестве катализаторов используют как органические (щавелевая, фталевая), так и минеральные (фосфорная, соляная) кислоты и некоторые соли (AlCl3, ZnCl2). Продукты отверждения – бесцветные, светостойкие, легко окрашивающиеся полимеры. Смолы, отверждённые при низких температурах даже в присутствии больших количеств катализатора, имеют пониженную водостойкость. При повышении температуры отверждения водостойкость возрастает. Однако продукты, полученные в оптимальном режиме (120 – 140 , катализатор), всё же частично разлагаются под действием горячей воды или водных растворов солей. Это обусловлено недостаточной разветвлённостью цепей и малым количеством поперечных связей, о чём свидетельствует низкое коксовое число продуктов отверждения (14 – 21,5%) и их быстрая деструкция при нагревании без доступа воздуха.
Существенный недостаток мочевино-формальдегидных смол – выделение формальдегида в процессе переработки и при эксплуатации отверждённых смол. Это объясняется наличием в материале формальдегида, не прореагировавшего при поликонденсации, а также образованием его вследствие наличия в полимере метилольных групп и метиленэфирных связей, превращающихся в метиленовые. Формальдегид оказывает токсичное действие на организм человека и вызывает растрескивание изделий.
Отверждённые мочевино-формальдегидные смолы (в отличие от феноло-формальдегидных) прозрачны даже тогда, когда в них содержится 10 – 15% воды. Вода находится в полимере в диспергированном состоянии и химически не связана с ним. Она постепенно испаряется даже при комнатной температуре, причём происходит усадка и растрескивание материала. Поэтому для удержания некоторого количества воды в мочевино-формальдегидные смолы иногда вводят гидрофильные добавки (поливиниловый спирт, крахмал, белковые вещества) и твёрдые наполнители (например, древесную муку), препятствующие усадке полимера.
5 Применение
Мочевино-формальдегидные смолы применяют в качестве связующих в производстве аминопластов, слоистых пластиков и для изготовления клеев. Мочевино-формальдегидные смолы, модифицированные бутиловым спиртом, используют в смеси с другими плёнкообразующими для приготовления электроизоляционных, декоративных, антикоррозионных лакокрасочных материалов.
Мочевино-формальдегидные смолы, модифицированные фуриловым спиртом, используют для изготовления литейных стержней для алюминиевого и чугунного литья. Они экономически выгодны в высокопроизводительном литейном производстве.
Мочевино-формальдегидные смолы, модифицированные поливинилацетатной эмульсией, используют в производстве карбамидных клеев и в качестве связующих в производстве слоистых пластиков, к которым предъявляются высокие требования по водостойкости.
Водоэмульсионные мочевино-формальдегидные смолы, модифицированные глицерином, способствующим снижению хрупкости полимера, используют для получения тепло- и звукоизоляционного пенопласта – мипоры.
В России производятся мочевино-формальдегидные смолы марок МФ, М, УКС, бартрев. За рубежом мочевино-формальдегидные смолы выпускают под названиями: аутосет, формасет, циакор резин, урак резин, америте (США); фиталак, каларок (Великобритания); ипорка, бекурол, фестопас, элмопласт (Германия); аминоцел (Италия); сидонур (США, Канада, Великобритания, Германия), деламин (Австрия) и др.
Заключение
Из всего вышесказанного можно сделать вывод о том, что развитие производства данного полимера довольно перспективно. Разнообразный характер применения мочевино-формальдегидных смол объясняется их дешевизной и доступностью сырья. Для получения мочевино-формальдегидных смол есть развитая сырьевая база, а технология изготовления их сравнительно проста.
Широкое применение мочевино-формальдегидных смол основано на наличии у них ряда важных технических свойств, например, они способны отверждаться как при нагреве, так и при комнатной температуре, они бесцветны и способны окрашиваться в любой цвет.
На основе водных растворов мочевино-формальдегидных смол изготовляют клеи, применяемые в деревообрабатывающей и мебельной промышленности. Клеи способны клеить древесину с влажностью 8 – 15%, они стойки к микроорганизмам, воде, бензину и маслам и негорючи. Жизнеспособность отдельных марок клеев (время, в течение которого клей не желатинизируется) составляет от 3 до 6 часов. Недостаток их – в постепенном выделении в помещении формальдегида, которого содержится в клее около 2%.