166663 (740371), страница 2

Файл №740371 166663 (Коллоидная химия) 2 страница166663 (740371) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Для успешного проведения седиментометрического анализа должно выполняться условие независимого движения каждой частицы. Этого достигают, применяя разбавленные системы, а в некоторых случаях добавляя стабилизаторы, препятствующие слипанию частиц.

Известны и применяются в практике различные приборы – седиментометры. Например, ряд приборов позволяет проводить анализ по методу накопления осадка на чашечке весов (метод предложен Оденом). Принцип метода состоит в том, что через определенные интервалы времени взвешивают чашку, опущенную в суспензию, и по нарастанию ее массы судят о соотношении различных фракций в суспензии.

Широкое применение для взвешивания чашки с осадком получили торсионные весы. Проведение седиментометрического анализа основано на том, что по мере оседания частиц их масса на чашке увеличивается вначале быстро, так как, прежде всего, оседают наиболее тяжелые частицы, затем все медленнее. При этом каждая фракция считается монодисперсной.

По данным взвешивания осадка получают кривую седиментации, которая выражает зависимость количества осадка q от времени осаждения . Для монодисперсной системы (рис. 1, а) угол наклона прямолинейного участка кривой определяется скоростью оседания частиц и связан с их размером.

Точка перегиба позволяет определить время полного оседания суспензии 1, которое в свою очередь, дает возможность найти скорость оседания частиц , где h – высота столба суспензии над чашкой весов.

Для бидисперсной системы седиментационная кривая имеет более сложный вид (рис. 1, б). Можно представить себе, что частицы каждой из двух фракций, выпадающие с постоянной скоростью, дают две прямых OA и OB, с различными угловыми коэффициентами, в соответствии с размерами частиц и концентрацией каждой фракции. Однако при совместном оседании обеих фракций мы наблюдаем не эти прямые в отдельности, а суммарную линию седиментации, тангенс угла наклона которой к оси абсцисс является суммой тангенсов углов наклона обеих прямых (OA и OB). В момент полного выпадения фракции, состоящей из частиц больших размеров, эта суммарная линия получает излом (в точке A/) и далее идет параллельно прямой OB, выражающей скорость оседания частиц фракции меньших размеров. В момент окончания оседания второй фракции на графике в точке B/ обнаруживается второй излом, после которого прямая идет параллельно оси абсцисс.

По кривой седиментации оказывается возможным построить прямые осаждения для каждой фракции в отдельности, которые, как было уже сказано, не могут быть получены непосредственно на опыте.

Из рис. 1, б видно, что, продолжая отрезок A/B/ линии седиментации до пересечения с осью ординат и проводя из точки пересечения y прямую, параллельную оси абсцисс, до пересечения ее с линией A/A// , мы получим конечную точку A прямой осаждения фракции, состоящей из крупных частиц. Проводя из начала координат линию OB, параллельную линии y B/ , до пересечения с линией B/B// , получим прямую осаждения фракции, состоящей из мелких частиц, с конечной точкой B .

Рис.1 Кривые седиментации монодисперсной (а) и полидисперсных (б, в) систем.

Если ординаты конечных точек A и B прямых осаждения обеих фракций выражают общее количество (по массе) этих фракций, то очевидно, что ордината точки B/ суммарной линии выражает общее количество обеих фракций (100 %) суспендированного вещества. Легко понять, что отрезки Oy и yx дают относительное содержание каждой фракции в процентах от общего количества суспендированного вещества.

Имеются графические и аналитические методы расчета кривой седиментации.

Монодисперсная система – это система, которая состоит из одинаковых по размеру частиц.

Полидисперсная система – это система, частицы которой имеют различные радиусы.

Так как коллоидные частицы под действием силы тяжести не седиментируют, то под действием центрифуги с большим ускорением можно заставить оседать достаточно быстро и коллоидные частицы.

Ультрацентрифугу используют для определения размера частиц.

6. Методы очистки золей: диализ, электродиализ, ультрафильтрация

Диализ. Очищаемый золь, заливают в сосуд, дном которого служит мембрана, задерживающая коллоидные частицы или макромолекулы и пропускающая молекулы растворителя и низкомолекулярные примеси. Внешней средой, контактирующей с мембраной, является растворитель. Низкомолекулярные примеси, концентрация которых в золе или макромолекулярном растворе выше, переходят сквозь мембрану во внешнюю среду (диализат). Очистка идет до тех пор, пока концентрации примесей в золе и диализате не станут близкими по величине. Если обновлять растворитель, то можно практически полностью избавиться от примесей.

Такое использование диализа целесообразно, когда цель очистки – удаление всех низкомолекулярных веществ, проходящих сквозь мембрану. Однако в ряде случаев задача может оказаться сложнее – необходимо освободиться только от определенной части низкомолекулярных соединений в системе. Тогда в качестве внешней среды применяют раствор тех веществ, которые необходимо сохранить в системе. Именно такая задача ставится при очистке крови от низкомолекулярных шлаков и токсинов (солей, мочевины и т.п.). Если удалять подряд все низкомолекулярные компоненты крови, то начинается разрушение клеток, что, в свою очередь, может привести к гибели организма.

Электродиализ. Очистку от электролитов можно значительно ускорить действием приложенной разности потенциалов (электромиграцией). Такой метод очистки называется электродиализом. Его используют для очистки различных биологических объектов (растворы белков, сыворотка крови и пр.).

Ультрафильтрация. Ультрафильтрация – метод очистки коллоидных систем путем продавливания дисперсионной среды вместе с низкомолекулярными примесями через ультрафильтры. Ультрафильтрами служат мембраны того же типа, что и для диализа. В мешочек из ультрафильтра наливают очищаемый золь или раствор высокомолекулярного вещества. К золю прилагают давление, избыточное по сравнению с атмосферным. Дисперсионную среду обновляют, добавляя к золю чистый растворитель.

Ультрафильтрация используется не только для удаления низкомолекулярных компонентов смеси, но и для концентрирования систем и разделения веществ с различной молекулярной массой. Этим методом очищают сточные воды, отделяют культуральные жидкости от продуктов микробиологического синтеза, концентрируют биологически активные вещества: белки, ферменты, антибиотики и т.д.

В последние годы ультрафильтрация наряду с диализом получила распространение в клинике для обработки крови. Этот метод применяется для выведения из организма токсических веществ и, если это необходимо, для удаления избытка жидкости.

II. Раздел «Оптические свойства коллоидных систем»

1. Оптические свойства коллоидных систем. Опалесценция и флуоресценция

Прохождение света через коллоидную систему вызывает три оптических эффекта: поглощение, отражение и рассеивание лучей. Поглощение свойственно всем системам, тогда как отражение более характерно для грубодисперсных систем (эмульсий и суспензий), где размер частиц больше, чем длина волны облучения. Поэтому, в отличие от молекулярных и ионных растворов, которые не имеют поверхности раздела фаз и оптически однородны, коллоидные растворы рассеивают свет.

Это проявляется опалесценцией в виде голубоватого матового свечения при освещении боковым светом. При пропускании параллельного пучка света через коллоидный раствор наблюдается конус рассеянного света – эффект Тиндаля. По способности рассеивать свет можно определять концентрацию коллоидных частиц в растворе - метод нефелометрии.

Опалесценция (светорассеяние) наблюдается только тогда, когда длина световой волны больше размера частицы дисперсной фазы. Если длина световой волны много меньше диаметра частицы, происходит отражение света, проявляющееся в мутности.

Рассеянный свет имеет ту особенность, что он распространяется во всех направлениях. Интенсивность рассеянного света в различных направлениях различна.

С опалесценцией внешне сходна, флуоресценция, характерная для истинных растворов некоторых красителей. Она заключается в том, что раствор при наблюдении в отраженном свете имеет иную окраску, чем в проходящем, и в нем можно видеть такой же конус Тиндаля, что и в типичных коллоидных системах. Однако по существу это совершенно различные явления. Опалесценция возникает в результате рассеяния света, при этом длина волны рассеянного света та же, что и падающего. Флуоресценция же представляет собой внутримолекулярное явление, заключающееся в селективном поглощении молекулой вещества светового луча и в трансформировании его в световой луч с другой, большей длиной волны.

2. Поглощение света дисперсными системами. Зависимость поглощения от концентрации. Закон Бугера-Ламберта-Бера

В 1760г. Ламберт, а еще ранее Бугер установили следующую зависимость между интенсивностью прошедшего света и толщиной среды, через которую этот свет прошел:

,

где - интенсивность прошедшего света;

- интенсивность падающего света;

- коэффициент поглощения;

- толщина поглощающего света.

Согласно закону Бугера-Ламберта – каждый последующий слой поглощает ту же долю проходящего света, что и предыдущий.

Бер показал, что коэффициент поглощения растворов с абсолютно бесцветным и прозрачным растворителем пропорционален молярной концентрации растворенного вещества: .

Вводя значение молярного коэффициента поглощения в уравнение Бугера-Ламберта, получим закон Бугера-Ламберта-Бера:

,

Закон устанавливает зависимость интенсивности прошедшего света от толщины слоя и концентрации растворенного вещества.

Логарифмируя уравнение, получим:

,

где - оптическая плотность раствора ;

- светопропускание раствора.

Если , тогда ,

Если , раствор не адсорбирует света, тогда закон Бугера-Ламберта-Бера имеет вид:

,

т.е. интенсивность прошедшего света будет равна интенсивности падающего.

Молярный коэффициент поглощения зависит от длины волны адсорбирующего света, температуры и природы растворенного вещества и растворителя и не зависит от концентрации раствора.

Закон Бугера-Ламберта-Бера приложим для золей высокой дисперсности, если слой жидкости не слишком толст, а концентрация раствора не слишком большая.

Для металлических золей уравнение светопоглощения должно учитывать дисперсность системы:

,

3. Рассеяние света коллоидными системами. Конус Тиндаля. Закон Релея и его анализ

Тиндаль (1869г.) наблюдал образование светящегося конуса при пропускании пучка света через коллоидный раствор.

Характеристики

Тип файла
Документ
Размер
3,63 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее