166517 (740299)
Текст из файла
На правах рукописи
ЯКОВЛЕВ АНДРЕЙ ВАСИЛЬЕВИЧ
РАЗРАБОТКА ОСНОВ ТЕХНОЛОГИИ И
ОБОРУДОВАНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО
ПРОИЗВОДСТВА НИТРАТА ГРАФИТА
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата технических наук
2002
Общая характеристика работы
Актуальность темы
Применение пенографита, а также композитов на его основе, заложено в многочисленных новейших технологиях производства хемо и термостойких прокладочных, уплотнительных и футеровочных материалов. Низкоплотные углеродные материалы применяются при изготовлении шумо и радиационно-поглощающих панелей, огнезащитных облицовок, адсорбентов и катализаторов и др.». Пенографит (ПГ) с плотностью менее -7г/дм3 прокатывается в гибкую графитовую фольгу широкого функционального назначения.
В современной промышленности традиционная схема производства ПГ, включает стадию получения соединений внедрения графита (СВГ) акцепторного типа, преимущественно бисульфата (БГ) или соединения синтезируют химическим способом, окисляя графит в соответствующей концентрированной кислоте. СВГ с кислотами можно получить и анодным окислением графита в электролитах с достаточно высокой концентрацией Р иона. Электрохимический способ имеет ряд преимуществ: обеспечивает повышенную чистоту и однородность получаемого продукта, более экологически безопасен, предоставляет возможность синтеза СВГ с заданными I свойствами, легко управляется и автоматизируется.
Указанные преимущества были подтверждены на примере БГ при разработке основ электрохимической технологии и оборудования для его производства. Достаточные сведения в литературе по электрохимическому получению НГ отсутствуют, хотя есть основания предполагать, что азотнокислые электролиты по сравнению с серной кислотой, способны обеспечить более высокую производительность электрохимической технологии. В связи с этим, изучение влияния различных факторов и выявление условий анодной обработки графита в НШ с целью получения для последующей переработки в ПГ и графитовую фольгу является весьма актуальным.
Все данные, представленные в диссертации, получены в соответствии с планами хозяйственных договоров с Московским государственным университетом им. М.В. Ломоносова и АОЗТ ГУНИХИМТЕК» при МГУ, а также с программой, утвержденной министерством общего и профессионального образования Российской Федерации (приказ № 436-П от 04.07.95г.).
Целью настоящей работы
является поиск условий электрохимического облучения на основе дисперсного углеродного материала нитрата графита, обеспечивающего его последующую переработку в графитовую фольгу, разработка рекомендаций по реализации технологии и усовершенствованию оборудования.
Для достижения поставленной цели необходимо решить следующие задачи:
-
изучить природу процессов, протекающих на инертном и углеродсодержащих электродах в растворах различной концентрации при катодной и анодной поляризации;
-
определить режим и условия анодной обработки дисперсного графита в азотнокислом электролите для получения СВГ с HNO;
-
выявить оптимальные параметры электрохимического синтеза НГ, обеспечивающего его дальнейшую переработку в. графитовую фольгу;
-
выбрать необходимые конструкционные, электродные и сепарационные материалы для электрохимического реактора;
-
провести оценку возможности использования существующего оборудования и дать рекомендации для его переоснастки.
Научная новизна работы
Впервые получены СВГ с азотной кислотой анодным окислением дисперсного углеродного материала в потенциостатическом режиме. Показано влияние потенциала анода и сообщенного количества электричества на свойства, получаемого ИГ. Изучено влияние концентрации на процесс электрохимического внедрения, выявлена роль воды в образовании НГ. Выбраны оптимальные параметры для электрохимического получения НГ, обеспечивающего его переработку в графитовую фольгу. Впервые в растворах с содержанием менее 60% НЖ синтезированы СВГ, термообработка которых дает плотность пенографита в 1...2 г/дм3. Изучена природа катодных процессов в концентрированной азотной кислоте на платине, титане, нержавеющей стали и углеродных материалах. Установлено, что предварительная термообработка титана значительно тормозит катодное восстановление Н, но не препятствует выделению водорода.
По результатам работы подана заявка на изобретение, по которой получено положительное решение.
Практическая значимость результатов работы
Разработана и изготовлена электрохимическая ячейка для синтеза нитрата графита на основе дисперсного графита. Экспериментально показаны преимущества потенциостатического режима анодной обработки при использовании азотнокислых электролитов.
Варьированием условий электролиза на основе дисперсного графита получены образцы нитрата графита с различной температурой и степенью вспенивания. Рекомендованы параметры электрохимического синтеза, позволяющие получать СВГ для переработки в графитовую фольгу.
Подобраны необходимые материалы оборудования для производства графита электрохимическим способом. В качестве катода рекомендовано применение предварительно оксидированного титана. Даны предложения по усовершенствованию электрохимического реактора непрерывного действия.
Полученные результаты могут служить основой для разработки электрохимической технологии получения нитрата графита.
Апробация результатов работы
Синтезированные образцы НГ и пенографит на их основе по своим свойствам (степень вспенивания, насыпная плотность, зольность, остаточное содержание азота) сопоставимы с СВГ, полученными химическим способом, и могут быть использованы для переработки в графитовую фольгу. Работоспособность оксидированного титана в качестве катода в азотнокислых электролитах была подтверждена макетными испытаниями. Материалы диссертационной работы докладывались на XVI Менделеевском съезде по общей и прикладной химии (1998г., Санкт-Петербург); Международной конференции «Композит-98» (1998г., Саратов); Всероссийской конференции «Современные проблемы теоретической и экспериментальной химии» (Саратов, 1997г.); на научных семинарах на кафедре ХФВД МГУ Ломоносова.
На защиту выносятся следующие основные положения:
Результаты электрохимических исследований природы анодных и катодных реакций в растворах азотной кислоты различной концентрации на платине, ряда углеродных и металлических материалов.
Влияние режима и условий анодной обработки дисперсного графита в азотной кислоте на свойства получаемого нитрата графита.
Результаты исследования материалов для электрохимического реактора и данные по влиянию оксидирования титана на его катодную активность в азотнокислых электролитах.
Рекомендации по реализации технологии электрохимического синтеза НГ и модернизации оборудования для его осуществления.
Публикации
По материалам диссертации опубликованы 2 статьи в центральных журналах, 3 тезисов докладов на конференциях, 1 статья депонирована в ВИНИТИ, получено 1 положительное решение о выдаче патента на изобретение.
Структура и объем работы
Диссертационная работа состоит из введения, литературного обзора, методического и экспериментальных разделов, общих выводов, библиографии и приложения. Изложена на страницах, машинописного текста и включает 5 рисунков, 7 таблиц и список литературы.
Основное содержание работы
Во введении дано обоснование актуальности темы, сформулированы цель и задачи исследования, научная новизна и практическая значимость работы.
В первой главе обобщены современные представления о соединениях внедрения в графит. Приводятся данные по структуре нитрата графита, описаны его состав и свойства. Кратко изложены данные о способах получения и свойствах продуктов, получаемых при дальнейших превращениях нитрата графита в процессе его гидролиза и последующей термообработке.
На основании анализа литературы установлено, что практически отсутствуют: данные по электрохимическому синтезу НГ на основе дисперсных углеродных материалов; сведения о применении потенциостатического синтеза.
Вторая глава посвящена описанию объектов и методов исследований. Электрохимические измерения в работе проведены с помощью хроновольтамперометрического, потенциостатического и потенциометрнческого методов. Дана схема специально разработанной электрохимической ячейки для потенциостатыческого синтеза НГ (рис.1). Приведены условия переработки СВГ в окисленный графит, пенографит и изделия из пего. Описаны методики определения состава нитрата графита и ряда свойств материалов на его основе. Рентгенофазовый анализ использовался для определения структуры получаемых СВГ. Структуры окисленного графита и пенографита изучались с помощью электронной микроскопии. Описаны способы обработки титана при температурном и электрохимическом оксидировании его поверхности.
В третьей главе потенциометрическими и хроновольтамперометрическими измерениями в растворах HNO3 выявлена природа протекающих процессов в катодной и анодной областях потенциалов на платиновом и ряде углеродсодержащих материалов (пирографит, ГСМ-1, СУ-12, спектральный графит). Выявлено, что в катодной области для всех исследованных электродов регистрируются восстановление азотной кислоты до ряда продуктов (HNO2, NO2, N2O4, N0 и др.) и выделение водорода отрицательнее -0,3В (х.с.э.). (Все потенциалы далее указаны относительно хлор - серебряного электрода сравнения (х.с.э.)).
При уменьшении содержания HNO3 в растворе скорость катодного процесса восстановления азотной кислоты закономерно уменьшается и практически полностью. Отсутствует для 2,96М и менее концентрированных растворов. Согласно циклическим потенциодинамическим кривым (ПДК) для платинового электрода (рис.2), в анодной области практически отсутствуют токи до области выделения кислорода 1,65В, интенсивное выделение которого наблюдается при потенциалах положительнее 2,1В. Предварительная катодная поляризация обнаруживает на платине в анодной области токи, связанные с окислением продуктов восстановления азотной кислотой (рис.2). С начальным ходом развертки: в анодную (1, 2) и в катодную области (3, 4). t = 24С, V= 10 мВ/с.
В отличие от платины, на углеродных материалах (рис.3) до процесса выделения кислорода регистрируются токи, вызванные окислением поверхностных функциональных групп (ПФГ), а также электрохимическим внедрением нитрат - ионов в структуру графитовой матрицы:
nC + 3HN03 = СN03 2HN03 + Н+ + е (1)
Минимальные значения анодных токов отмечаются для стеклоуглерода, более высокие токи характерны для упорядоченной структуры пирографита, а максимальные для спектрального графита (СГ)- Электрохимическое внедрение наиболее легко должно протекать на пирографите, и, по-видимому, анодные токи в анализируемой области для данного материала, в основном, обусловлены реакцией 1. Неупорядоченная и достаточно пористая структура СГ будет способствовать окислению электрода, в связи с этим, высокие «токи в анализируемой области потенциалов для данного материала (рис.3) вызваны не только значительным увеличением истинной поверхности, но и параллельным протеканием реакций 1-3:
С + Н20 =(п-1)С +СО+ 2+26 (2)
C + 2H20 = (n-l)C + C02 + 4H4 + 4e (3)
Плавный ход кривой, характерный для суспензионного анода, связан с нивелированием влияния отдельных процессов на ход ПДК, и определяется особенностями макроструктуры электрода. Исследование влияния концентрации азотной кислоты на анодные процессы было проведено из соображения максимального приближения к реальным условиям на суспензионном графитовом электроде.
-
Неоднозначная концентрационная зависимость анодных токов вызвана изменением соотношения скоростей электрохимического внедрения и процессов с участием, воды (реакции 2, 3 и образование рг). С ростом содержания воды в растворе последние реакции ускоряются, а процесс внедрения тормозится. Циклирование графита ГСМ-1 с постепенным смещением потенциала реверса в анодную область позволило установить, что необратимые процессы на электроде в 12,55М HNOs начинаются положительнее 1,4В, а в 2,96М растворе - положительнее 1,3В.
Проведенный комплекс экспериментальных исследований указывает на то, что электрохимический синтез образцов нитрата графита следует вести в интервале потенциалов от 1,5 В до потенциала 2,1 В (интенсивное выделение кислорода), с использованием более концентрированных растворов HNO3. Выявленное обратное восстановление СВГ и негативное влияние продуктов катодного разложения HN03 на процесс внедрения требуют обязательного разделения катодного и анодного пространств диафрагмой, как в электролизерах лабораторного назначения, так и в опытно-промышленных реакторах.
В четвертой главе представлены данные по электрохимическому синтезу, на основе дисперсного углеродного материала, соединений внедрения графита с азотной кислотой, влиянию режима анодной обработки и условий ее проведения на кинетику процесса и свойства получаемых соединений.
В связи с тем, что рентгенофазовый анализ при получении СВГ в азотной кислоте с концентрацией менее 65 % не обнаруживает классического ступенного строения, свойства синтезированных нами соединений оценивались по способности к терморасширению (по плотности пенографита) при г = 850...870°С. Именно образование пенографита является неоспоримым доказательством образования СВГ.
Анодная обработка графита ГСМ 1 в электрохимической ячейке (рис.1) при постоянном токе и заданном потенциале анода (Еа) позволила установить, что при потенциостатическом синтезе затраты электроэнергии на 10-50% ниже. При навесках графита в 0,2-0,3 г/см2 с толщиной слоя 0,7-1,1 см в используемом электролизере получали наиболее однородные по составу соединения с наименьшей плотностью пенографита (<1ш). Поэтому в дальнейшем все эксперименты в ячейке проводились с насыпным графитовым электродом в 0,5г (0,2 г/см ).
Ход потенциостатических кривых (рис.4) отображает комплекс последовательно-параллельных реакций: изменение состава ПФГ, электрохимическое внедрение (1), окисление углерода (2, 3), выделение кислорода. Как отмечалось ранее, необратимые реакции (2, 3 и выделение 02) начинаются при потенциалах положительнее 1,3-1,4В. Синтез образцов СВГ при таких потенциалах и даже более положительных (1,5-1,7 В) выявил, что процесс внедрения в 12,55 М НО протекаете очень низкими скоростями (< 5 мА/г) .Обработку в этом случае для получения нитрата графита, способного образовывать пенографит, необходимо вести более 10^-15 часов. Такое время синтеза неприемлемо для разработки технологии, так как в этом случае она становится неконкурентоспособной не только с химическим способом производства СВГ, но и электрохимическим получением БГ. Увеличение Е. приводит к значительному росту токов и повышению сообщаемой емкости в единицу времени. Согласно данным рисунка 5, проведение синтеза при потенциалах положительнее 2,1В нецелесообразно, в связи с этим, основная часть экспериментов по синтезу СВГ с HNC была проведена при указанном потенциале, который обеспечивает получение необходимой плотности пенографита.
1>Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.












