166322 (740208)

Файл №740208 166322 (Применение сингулярной матрицы в химии)166322 (740208)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Применение сингулярной матрицы в химии

(Реферат)





О Г Л А В Л Е Н И Е



Введение 3

Глава 1. Общие сведения о сингулярном разложении и сингулярных матрицах 4

1.1. Ортогональное разложение посредством сингулярного разложения 4

1.2. Вычисление сингулярного разложения 5

Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами 7

2.1. Общие сведения о факторных методах 7

2.2. Операции с матрицами и многомерный анализ данных 9

2.3. Свойства сингулярной матрицы 10

Заключение 12

Список используемой литературы 16









Введение



Как известно, химия часто оказывается на перекрестке разных дисциплин. Для химика всегда есть большой соблазн в том, чтобы заняться какой-то чрезвычайно узкой областью, где он останется защищенным от всех превратностей, наслаждаясь удобством положения единст­венного в своем роде специалиста. Чтобы постоянно быть в курсе дела и в готовности встретить любую новую ситуацию, химику требуется быть знако­мым с огромным объемом информации, необходимой не только для движения вперед, но и просто для сохранения своего положения.

При написании данного реферата была использована следующая литература, содержащая информацию о сингулярных матрицах и применении их в химии:

  • книга «ЭВМ помогает химии» (пер. с англ) под ред. Г. Вернена, М. Шанона, в которой рассмотрено применение ЭВМ в различных областях химии: синтез органических соединений, кристаллография, масс-спектрометрия и т. д.

  • книга Ч.Лоусона и Р.Хенсона «Численное решение задач метода наименьших квадратов» (пер. с англ), посвященная изложению численных решений линейных задач метода наимень­ших квадратов.





Глава 1. Общие сведения о сингулярном разложении и сингулярных матрицах

1.1. Ортогональное разложение посредством сингулярного разложения



В этом пункте данного реферата будет описано одно практически полезное ортогональ­ное разложение т x n - матрицы А. Мы покажем здесь, что невырожденную под­матрицу R матрицы A можно еще более упростить так, чтобы она стала невырожден­ной диагональной матрицей. Получаемое в результате разложение особенно полезно при анализе влияния ошибок входной информации на решение задачи НК.

Это разложение тесно связано со спектральным разложением симметрич­ных неотрицательно определенных матриц ATA и AAT.



Теорема (сингулярное разложение). Пусть А - m x n -матрица ранга k. Тогда существуют ортогональная m x m матрица U, ортогональ­ная n x n -матрица V и диагональная m x n -матрица S) такие, что

Матрицу S можно выбрать так, чтобы ее диагональные элементы составля­ли невозрастающую последовательность; все эти элементы неотрицательны и ровно k из них строго положительны.

Диагональные элементы S называются сингулярными числами А.

Доказательства данной теоремы приводить не имеет смысла во избежание нагромождения множества сложных математических выкладок, прямого отношения к теме, рассматриваемой в данном реферате, не имеющих. Ограничимся следующим численным примером, в котором дано сингулярное разложение матри­цы А вида:



1.2. Вычисление сингулярного разложения

Рассмотрим теперь построение сингулярного разложения т Х n - матрицы в предположении, что т > п. Сингулярное разложение будет вычислено в два этапа.

На первом этапе А преобразуется к верхней двухдиагональной матрице посредством последовательности (не более чем из n 1) преобразований Хаусхолдера



где



Трансформирующая матрица выбирается так, чтобы аннулировать элементы i + 1, ..., т столбца i; матрица Hi так, чтобы аннулировав элементы i + 1,.... п строки / - 1.

Заметим, что Qn - это попросту единичная матрица. Она включена, чтобы упростить обозначения; Qn также будет единичной матрицей при от = я, но при т > п она, вообще говоря, отличается от единичной.

Второй этап процесса состоит в применении специальным образом адап­тированного QR-алгоритма к вычислению сингулярного разложения матрицы

Здесь - ортогональные матрицы, a S диагональная.



Можно получить сингулярное разложение А:

Сингулярное разложение матрицы В будет получено посредством следующего итерационного процесса:

Здесь - ортогональные матрицы, а Bk- верхняя двухдиагональ­ная матрица для всех k.

Заметим, что диагональные элементы матрицы полученной непосред­ственно из этой итерационной процедуры, не являются в общем случае ни положительными, ни упорядоченными. Эти свойства обеспечиваются специальной последующей обработкой.

Сама итерационная процедура представляет собой (QR-алгоритм Фрэнсиса, адаптированный Голубом и Райншем к задаче вычисления сингулярных чисел.



Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами

2.1. Общие сведения о факторных методах

Многомерный анализ данных играет все возрастающую роль во многих научных дисциплинах, включая науки о земле, жизнеобес­печении, в социологии, а также менеджменте. Однако в химии эти методы развивались не так быстро. Хотя основы методов были созданы в начале века, а области их применения были опре­делены в тридцатых годах , первые случаи их использова­ния отмечены только в шестидесятых годах. Действительно, наи­более часто применяемыми в хемометрике методами стали фактор­ный анализ (ФА), анализ (метод) главных компонент (МГК) и факторный дискриминантный анализ (ФДА).

Хемометрика преследует две цели :

  • извлечение максимума информации за счет анализа химиче­ских данных;

  • оптимальное планирование измерительных процедур и экспе­риментов.

Первая цель может быть подразделена на две:

1) описание, классификация и интерпретация химических данных;

2) моделирование химических экспериментов, процессов и их последующая оптимизация.

Из всего многообразия видов обработки наборов химических данных можно выделить некоторые наиболее характерные области применения:

  • многокомпонентный анализ спектрометрических или хромато-графических данных различных смесей. Цель анализа — опреде­ление числа компонентов и иногда также их идентификация. Для решения задач, связанных с равновесиями в растворе и сложной кинетикой, используется факторный анализ;

  • поиск неизмеряемых факторов, отражающих те физико-хими­ческие свойства, которые оказываются слишком сложными для точного моделирования, например, таких, как:

а) времена задержки для хроматографии;

б) данные по химическому сдвигу;

в) константы равновесия и кинетические константы;

г) данные по степени превращения и селективности.

Интерпретация этих факторов может высветить новые явле­ния или подчеркнуть те физические свойства, которые помогут объяснить исходные наблюдения:

  • сведение наборов химических данных с большим числом пере­менных (которые часто коррелируют, а иногда и избыточны) к на­борам с меньшим числом независимых переменных. Каждая точ­ка будет характеризоваться меньшим числом новых переменных, которые затем могут быть использованы для модельных исследо­ваний. Этот метод можно применять для многокомпонентных природных продуктов со сложными физико-химическими свойства­ми (эфирные масла, продукты из сырой нефти и т. д.), а также для замеренных в ходе процесса наборов данных;

  • анализ многомерных наборов химических данных посредством графического представления объектов и переменных в векторном подпространстве с меньшим числом измерений. Подобное пред­ставление позволяет осуществить обзор всего набора данных для классификации объектов и объяснения их положения.

Цель данного пункта моего реферата — введение в методы факторного анализа с рассмотрением его теоретических основ и практических приложений.

Факторный анализ (ФА), анализ главных компонент (МГК) и факторный дискриминантный анализ (ФДА) будут представлены на различных специально подобранных примерах, иллюстрирую­щих множество областей их применения.



2.2. Операции с матрицами и многомерный анализ данных

Применение линейной алгебры в анализе данных будет проил­люстрировано на примере УФ-спектроскопии сложной смеси. В соответствии с законом Ламберта — Бера при данной частоте v полное поглощение образца, состоящего из l поглощающих компо­нентов, определяется как

, где – молярный коэффициент поглощения компонента j, а – молярная концентрация компонента j.

Если измерение проводится при п различных частотах, тогда единственное уравнение заменяется системой линейных уравнений

С использованием матриц следующую систему линейных урав­нений можно записать в виде:

Для дальнейшего упрощения выражения запишем матрицу поглощения (А) как произведение матриц коэффициентов экстинкции ( ) и концентрации (С):

(A) = ( ) (C)

Следует отметить, что матричные расчеты и их компьютерное применение дали тол­чок быстрому развитию многомерного анализа данных.



2.3. Свойства сингулярной матрицы

Матрица (X—Х)'(Х ) —квадратная, симметричная и положи­тельно определенная. Такие матрицы проявляют некоторые свой­ства, особенно полезные при анализе данных:

  • собственные значения, действительные, а также положитель­ные или равные нулю;

  • число ненулевых собственных значений равняется рангу мат­рицы;

  • два собственных вектора, связанные с двумя различными соб­ственными значениями ортогональны.

В качестве иллюстрации этих свойств, а также чтобы пока­зать их важность при анализе данных можно взять матрицу дисперсий-ковариаций и определим собственные значения матрицы методом наименьших квадратов.

Решая уравнение, получаем два собственных значения:

= 0 ,

что дает =1 и =0,6.

Как , так и действительны и положительны. Ранг матрицы должен равняться 2, поскольку в системе существуют два ненуле­вых собственных значения. Компоненты собственных векторов, связанные с каждым из собственных значений, получаем из опре­деления собственных векторов следующим образом:

Характеристики

Тип файла
Документ
Размер
1,25 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее