166191 (740155)
Текст из файла
Федеральное агентство по образованию Российской Федерации
Государственное образовательное учреждение высшего профессионального образования
"Южно-Уральский Государственный Университет"
Факультет "Автотракторный"
Кафедра "Эксплуатация автомобильного транспорта"
Реферат
по дисциплине
"ТКМ (материаловедение)"
на тему
"Пластические массы"
Работу выполнил
студент группы: АТ-261
Агеев П. И.
Челябинск 2010
Содержание
Введение
1. Общая характеристика
2. Термопласты
3. Реактопласты
4. Свойства и применение
Список литературы
Введение
Термин "пластические массы" появился в конце XIX в. Первые промышленные материалы были изготовлены на основе нитроцеллюлозы (1862-65) и казеина (1897). Развитие современных реактопластов началось с разработки фенопластов (Л. Бакеланд, 1907-08) и аминопластов (Г. Поллак, 1921), термопластов-с синтеза полистирола (1930), поливинилхлорида (1937), полиэтилена (1938-39). В России производство пластических масс начало складываться приблизительно в 1914 и достигло 5,03 млн. т/год (1986); научые основы и организационные начала связаны с именами Г.С. Петрова, A.M. Настюкова, А.А. Ваншейдта, С.H. Ушакова, И. П. Лосева и др. Современная промышленность пластических масс включает большой ассортимент материалов на основе разнообразных связующих и наполнителей. Рост мирового производства пластических масс идет высокими темпами (около 20% в год).
Пластические массы применяют во всех отраслях промышленности и сельского хозяйства в качестве материалов конструкционного, защитного, электротехнического, декоративного, фрикционного и антифрикционного назначений.
1. Общая характеристика
Пластические массы (пластмассы, пластики) – полимерные материалы, формуемые в изделия в пластическом или вязкотекучем состоянии обычно при повышенной температуре и под давлением. В обычных условиях находятся в твердом стеклообразном или кристаллическом состоянии. Помимо полимера могут содержать твердые или газообразные наполнители и различные модифицирующие добавки, улучшающие технологические и(или) эксплуатационные свойства, снижающие стоимость и изменяющие внешний вид изделий. В зависимости от природы твердого наполнителя различают асбопластики. боропластики. графитопласты, металлополимеры. органопластики. стеклопластики. углепластики. пластические массы, содержащие твердые наполнители в виде дисперсных частиц различной формы (например, сферической, игольчатой, волокнистой, пластинчатой, чешуйчатой) и размеров, распределенных в полимерной матрице (связующем), называемые дисперсно-наполненными. Пластические массы, содержащие наполнители волокнистого типа в виде ткани, бумаги, жгута, ленты, нити и др., образующие прочную непрерывную фазу в полимерной матрице, называются армированными
В пластические массы могут также сочетаться твердые дисперсные и(или) непрерывные наполнители одинаковой или различной природы (так называемые гибридные, или комбинированные, наполнители). Содержание твердого наполнителя в дисперсно-наполненных пластических массах обычно изменяется в пределах 30-70% по объему, в армированных - от 50 до 80%.
Пластические массы, содержащие в качестве наполнителя газ или полые органические либо неорганические частицы, относят к пенопластом. которые также м. б. дисперсно-наполненными или армированными.
Модифицирующие добавки вводят в пластические массы в небольших количествах для регулирования состава, структуры и свойств полимерной фазы или границы раздела фаз полимер - наполнитель. Для регулирования вязкости на стадиях получения и переработки пластические массы используют инертные или активные растворители, разбавители и загустители, для снижения температур стеклования, текучести и хрупкости-пластификаторы, для повышения хим., термо- и светостойкости - антиоксиданты. Термо- и светостабилизаторы – для снижения горючести, антипирены, для окрашивания - пигменты или красители, для снижения электризуемости - антистатики. для улучшения смачивания наполнителя и повышения адгезионного взаимодействия полимер - наполнитель используют ПАВ и аппретирующие ср-ва. По типу полимерного компонента и характеру физических и химических превращений, протекающих в нем при получении и переработке и определяющих способ и условия последних, пластические массы подразделяют на два принципиально различных класса - термопласты и реактопласты.
2. Термопласты
Термопласты (ТП) – пластические массы на основе линейных или разветвленных полимеров, сополимеров и их смесей, обратимо переходящих при нагревании в пластическое или вязкотекучее состояние в результате плавления кристаллич. и(или) размягчения аморфной (стеклообразной) фаз. Наиболее распространены ТП на основе гибкоцепных (главным образом карбоцепных) полимеров, сополимеров и их смесей-полиолефинов (полиэтилена, полипропилена. поли-4-метил-1-пентена), поливинилхлорида, полистирола, полиметилметакрилата. поливинилацеталей. производимых в больших объемах и имеющих сравнительно низкую стоимость; они обладают низкими температурами плавления и размягчения, тепло- и термостойкостью. Особое место среди пластических масс на основе карбоцепных полимеров занимают фторопласты, для которых характерны высокие температуры плавления и уникальные химическая стойкость и термостойкость, антифрикционные свойства. В меньших масштабах используют ТП на основе гетероцепных полимеров, сополимеров и их смесей, например гибкоцепных алифатических и жесткоцепных ароматических простых и сложных полиэфиров, полиамидов, полиацеталей, полиимидов и полиуретанов.
По фазовому состоянию не содержащие наполнителей (ненаполненные) ТП могут быть одно- и двухфазными аморфными, аморфно-кристаллическими и жидкокристаллическими. К однофазным аморфным ТП относятся полистирол, поли-метакрилаты, полифениленоксиды, которые эксплуатируются в стеклообразном состоянии и обладают высокой хрупкостью. По свойствам им близки стеклообразные аморфно-кристаллич. ТП, имеющие низкую степень кристалличности (менее 25%), например поливинилхлорид, поликарбонаты, полиэтилентере-фталат, и двухфазные аморфные ТП на основе смесей полимеров и привитых сополимеров. например ударопрочный полистирол, АБС-пластики, состоящие из непрерывной стеклообразной и тонкодиспергир. эластичной фаз. Деформац. теплостойкость таких ТП определяет температура стеклования, лежащая в интервале 90-2200C.
Кристаллические ТП, имеющие высокую степень кристалличности (более 40-50%) и низкую температуру стеклования, например полиолефины. фторопласты, полиформальдегид, алифатич. полиамиды, обычно эксплуатируют при температурах выше температур стеклования, когда аморфные области находятся в эластичном состоянии. Их деформационную теплостойкость определяет температура плавления, лежащая в интервале 110-3600C.
ТП на основе термотропных жидкокристаллических полимеров, например некоторых ароматич. сложных полиэфиров и их сополимеров, состоят из изотропной и анизотропной (чаще всего нематической) фаз. Анизотропная фаза характеризуется самопроизвольной ориентацией выпрямленных макромолекул или их участков и оказывает так называемый эффект самоармирования. Их теплостойкость определяет температура плавления жидкокристаллической фазы, лежащая в пределах 200-2500C.
Производят ТП в виде гранул или порошков. Для наполнения с целью снижения стоимости, повышения стабильности формы изделий и улучшения эксплуатационных свойств чаще всего используют коротковолокнистые наполнители органической или неорганической природы и минеральные порошки. Эти наполнители, а также модифицирующие добавки вводят чаще всего при переработке-гранулировании ТП, реже на стадии синтеза полимера. При использовании непрерывных волокнистых наполнителей их пропитывают раствором или расплавом полимера. Применяют также методы пленочной, волоконной или порошковой технологии, в которых наполнитель сочетают с ТП, находящимся в форме пленки, волокна или порошка соотвенно; на стадии формования изделий из таких пластмасс ТП расплавляются и наполнитель пропитывается ими.
В качестве газонаполненных ТП наиболее распространены пенополистирол и пенополивинилхлорид, а также синтактические пластические массы (наполнитель-полые частицы).
Ненаполненные и дисперсно-наполненные ТП формуют в изделия и полуфабрикаты (например, прутки, профили, листы) литьем под давлением и экструзией, реже прессованием или спеканием. Изделия из листовых заготовок ТП, в том числе армированных непрерывными наполнителями, изготовляют штамповкой, вакуумным и пневмоформованием. Изделия и полуфабрикаты из ТП можно подвергать механической обработке например, вырубке, резке, сварке, склеиванию и вторичной переработке. Для регулирования структуры ТП и остаточных напряжений в изделиях из них используют дополнительную термообработку (отжиг или закалку). Для снижения ползучести (особенно при повышенных температурах) ТП подвергают также химическому или радиационному сшиванию, приводящему к образованию пространственной сетки. Важный способ повышения деформационно-прочностных свойств ТП, особенно листовых и пленочных – ориентированная вытяжка.
3. Реактопласт
Реактопласт (РП – пластические массы на основе жидких или твердых, способных при нагревании переходить в вязкотекучее состояние, реакционноспособных олигомеров (смол), превращающихся в процессе отверждения при повышенной температуре и(или) в присутствии отвердителей в густосетчатые стеклообразные полимеры, необратимо теряющие способность переходить в вязкотекучее состояние. По типу реакционноспособных олигомеров РП подразделяют на фенопласты (на основе фенолоформальдегидных смол), аминопласты (на основе мочевино- и меламино-формальдегидных смол), эпоксипласты (на основе эпоксидных смол), эфиропласты (на основе олигомеров акриловых), имидопласты (на основе олигоимидов или смесей имидообразующих мономеров) и др. Молярная масса олигомеров, тип и количество реакционноспособных групп в них, а также природа и кол-во отвердителя определяют свойства РП на стадиях их получения, переработки в изделия (например, условия, механизм и скорость отверждения, объемные усадки и выделение летучих веществ), а также эксплуатационные свойства изделий. Для регулирования технологических свойств РП наиболее широко используют разбавители, загустители и смазки, а для модификации свойств в отвержденном состоянии - пластификаторы и эластифицирующие добавки (например, жидкие каучуки, простые олигоэфиры), которые вводят в олигомер.
Ненаполненные РП сравнительно редко используют как самостоятельные материалы из-за высоких объемных усадок при отверждении смол и возникающих вследствие этого больших усадочных напряжений. Обычно смолы, содержащие модифицирующие добавки, служат связующими наполненных РП. Дисперсно-наполненные РП получают в виде отверждающихся масс совмещением связующего с наполнителем в различных смесителях; такие РП перерабатывают в изделия методами компрессионного или литьевого прессования и литья под давлением, реже заливкой в формы или трансфертам прессованием. Армированные РП получают в виде препрегов предварительно пропитанных связующим непрерывных волокнистых наполнителей. Изделия из таких полуфабрикатов формируют методами намотки, выкладки и протяжки с последующим фиксированием их формы путем отверждения связующего. В других методах заготовки изделия формуют из "сухого" наполнителя, а затем, предварительно вакуумируя, пропитывают их связующим под давлением, после чего уплотняют и отверждают.
Из газонаполненных РП наибольшее распространение получили пенофенопласты и пенополиуретаны.
Основные преимущества РП по сравнению с ТП – более широкие возможности регулирования вязкости, смачивающей и пропитывающей способности связующего; недостатки обусловлены экзотермическими эффектами, объемными усадками и выделением летучих веществ при отверждении и связанными с этим дефектностью и нестабильностью формы изделий и их хрупкостью. Процессы формования изделий из РП обычно более длительны и трудоемки, чем из ТП. На предельных стадиях отверждения РП не способны к повторному формованию и сварке. Соединение деталей из РП производят склеиванием и механическими методами. При низких степенях отверждения РП способны к так называемой химической сварке и при формовке одной детали к другой.
4. Свойства и применение
Физико-механические и другие эксплуатационные свойства ТП и РП различаются в очень широких пределах в зависимости от типа и содержания полимера, наполнителя и модифицирующих добавок. Так, для ненаполненных пластических масс кратковременный модуль упругости при обычных условиях изменяется от 4 ГПа для аморфных стеклообразных до 0,015 ГПа для кристаллических с низкой температурой стеклования, а прочность при растяжении - от 150-200 до 10 МПа соответственно. Плотность ненаполненных пластических масс лежит в пределах 0,85-1,50 г/см3 и только для фторопластов достигает 2,3 г/см3. В широких пределах различаются также диэлектрические и теплофизические свойства ненаполненных пластических масс. Очень резко изменяются свойства пластических масс при их наполнении – от легких и мягких пенопластов до жестких и прочных бороорганов и углепластиков, значительно превосходящих по прочностным показателям конструкционные металлы.
Основные достоинства пластических масс – возможность производства деталей сложной формы и полуфабрикатов (пленок, труб, профилей и т.п.) высокопроизводительными, малоэнергоемкими и безотходными методами формования, низкая плотность, устойчивость в агрессивных средах, к воздействиям вибрации и ударных нагрузок, радиационных излучений, атмосферостойкость, высокие оптические и диэлектрические свойства, легкость окрашивания. К недостаткам относятся горючесть, большое тепловое расширение, низкие термо- и теплостойкость, склонность к ползучести и релаксации напряжения, растрескивание под напряжением.
Список литературы
-
Энциклопедия полимеров, т. 2, M., 1974
-
Пластики конструкционного назначения (реактопласты), под ред. E. Б. Тростянской, M., 1974
-
Термопласты конструкционного назначения, под ред. E. Б. Тростянской
-
Справочник но пластическим массам, под ред. В. H. Катаева, 2 изд., т. 1-2, M.. 1975
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















