165863 (739989), страница 2
Текст из файла (страница 2)
Занятая -МО одной молекулы этилена
не может перекрываться синхронно со свободной *-МО второй молекулы. Симметрия этих МО различна (относительно плоскости, проходящей перпендикулярно связи С-С через ее центр). В реакции бутадиена с этиленом, НСМО C4H6 (1*-C4H6) имеет одинаковую симметрию с ВЗМО C2H4 и процесс протекает по согласованному 6-центровому механизму
Аналогично и для перекрывания *-C2H4 и НЗМО C4H6 (2-C4H6).
Запрещенными по симметрии как элементарные стадии являются реакции присоединения молекул H2, Cl2, HCl, HF, HCN к кратным связям олефинов и алкинов (через 4-членное циклическое переходное состояние).
Реакции нуклеофильного и электрофильного присоединения и замещения, протекающие через линейные переходные состояния разрешены по симметрии. Участие переходных металлов (d-орбитали и d-электроны) в ЭС снимает запреты по симметрии и делает реакции согласованного присоединения по кратным связям металлосодержащих фрагментов разрешенными ЭС.
,
,
,
Разрешены по симметрии орбиталей также реакции присоединения молекул НХ к координированным атомом металла алкенам.
Правило сохранения 16-18 электронной оболочки Толмена в элементарных стадиях
Уже давно было отмечено (Сиджвик, 1929), что в стабильных комплексных соединениях общее количество электронов вокруг атома металла равно числу электронов ближайшего инертного газа. Это число электронов было названо эффективным атомным номером (ЭАН). В случае d-металлов число электронов в валентной оболочке металла, связанного с лигандами, должно быть равно 18 (d10s2p6). Такая оболочка и считается устойчивой. Например, Ni(CO)4: Ni0 d10, CO – 2-х электронный лиганд. Следовательно, 10 + 8 = 18. Для расчета числа электронов в комплексе металла необходимо сложить число электронов в валентной оболочке атома металла (или иона) и число электронов, предоставляемых нейтральными лигандами (или анионами). Для этого используют ковалентную и ионную модели химической связи. В первом случае комплекс включает ионы Mn+, X– и нейтральные лиганды L, а во втором – атомы металла, нейтральные группы X (гомолитический разрыв связи M–X) и нейтральные лиганды L. Например, в комплексе HMn(CO)5 в валентной оболочке Mn имеем для ионной модели:
H– (2 эл) + Mn+ (6 эл) + 5CO (10 эл) = 18 эл.
для ковалентной модели:
H· (1 эл) + Mn0 (7 эл) + 5CO (10 эл) = 18 эл.
В таблице 2.1 приведены некоторые лиганды, их обозначения и количества электронов, предоставляемых металлу в рамках ковалентной и ионной моделей.
Таблица 2.1
| Лиганды | Символ лиганда | Ковалентная модель | Ионная |
| Me, Ph, H, Cl, OH, CN | X | 1 эл | 2 эл |
| CO, NH3, H2O, PR3, R2S | L | 2 эл | 2 эл |
| C2H4 | L | 2 эл | 2 эл |
| H2 | L | 2 эл | 2 эл |
|
| LX | 3 эл | 4 эл |
| 3–C3H5 | LX | 3 эл | 4 эл |
| 3–C5H5 | L2X | 5 эл | 6 эл |
| 3–C6H6 | L3 | 6 эл | 6 эл |
В координационной химии достаточно много исключений из правила 18 электронной оболочки (в основном, в случае металлоорганических комплексов): Ni(C5H5)2 – 20 электронов, W(CH3)6 – 12 электронов. Тем не менее обобщение большого экспериментального материала позволило Толмену сформулировать следующее правило:
интермедиаты, образующиеся в реакциях комплексных и металлоорганических соединений, обычно имеют 18- или 16-электронные оболочки. Именно такие интермедиаты существуют в заметных количествах.
Таким образом, в стадиях с участием d-металлов, которые рассматриваются как элементарные, число валентных электронов должно меняться на 2 единицы (181618 и т.д.). Комплексы, имеющие в валентной оболочке 16 электронов, естественно, более реакционноспособны в реакциях замещения лигандов, поскольку в этом случае возможен ассоциативный механизм замещения:
Например, Rh(acac)(C2H4)2 (16 эл) обменивает этилен (13C2H4) по ассоциативному механизму с константой скорости 104 сек–1 (25оС, Р = 1 атм), а (C5H5)Rh(C2H4)2 (18 эл) обменивает этилен по диссоциативному механизму с константой скорости ~ 410–10 сек–1.
Из трех вариантов механизма внедрения молекулы СО по связи СН3–Mn вариант (1) согласно правилу Толмена наименее вероятен:
При наличии -аллильных, -циклопентадиенильных и -инденильных лигандов ассоциативный механизм для 18-электронных комплексов в ряде случаев оказывается возможным без перехода к 20-электронным оболочкам за счет изменения типа координации -лиганда (переход от 5- к 3-типу, от 3- к 1-типу):
18 эл. 18 эл.
(5-C5H5)M (3-C5H5)ML
Правило устойчивой 18-электронной оболочки применимо и к кластерам металлов. Более общим для кластеров металлов является правило Уэйда для расчета “магических” чисел – кластерных валентных электронов.
Топологические правила отбора
Эти эвристические правила отвечают на вопрос о вероятных структурах переходных состояний, т.е. о возможной топологии перераспределения связей и неподеленных пар в ходе ЭС.
Под топологией перераспределения связей понимается структура графа, который получается при наложении графов, изображающих рвущиеся и образующиеся связи. Любую химическую реакцию можно представить графически, если удалить группы и атомы, не участвующие в изменении связей. Так, реакцию Дильса-Альдера можно представить графическим уравнением (35), которое описывает перераспределение связей
(35)
G1 G2
Такое уравнение называют символьным или базовой реакцией.
Далее можно удалить связи, остающиеся неизменными, в результате чего получается уравнение (36), отражающее тип реакции:
(36)
G3 G4
Наложение графов G3 и G4 дает граф G5,
G5
называемый идентификатором топологии (ИТ) или топологией категории реакции. ИТ отражает топологию перераспределения связей и упрощенно представляет топологию переходного состояния (в данном случае циклическую). Если предполагают одновременный разрыв и (или) образование кратных связей, тогда в графах G3, G4 и G5 возникают кратные ребра, образующие дополнительные циклы в ИТ. Проведенный анализ различных баз стадий и органических реакций показал, что среди стадий, которые можно достаточно обоснованно отнести к ЭС, практически не встречается стадий со смешанными (линейно-циклическими) или более сложными (полициклическими) ИТ.
Таким образом, анализ топологической структуры (ИТ) можно использовать для отбора элементарных стадий, т.е. реакций, которые с топологической точки зрения имеют высокий шанс быть элементарными:
Стадии, переходные состояния которых не имеют простой топологии (циклической или линейной), не рассматриваются как элементарные.
Если в ходе реакции одновременно (синхронно) разрываются (или образуются) кратные связи, будем изображать их двумя (или тремя) дугами при изображении типа реакции:
(37)
ИТ:
(38)
В рамках изложенных представлений реакцию (37) не следует рассматривать как согласованный элементарный акт.
К топологическим правилам можно отнести также эвристическое правило, касающееся числа рвущихся и образующихся связей в ходе элементарной реакции. Анализ элементарных стадий с этой точки зрения показал, что в подавляющем большинстве случаев разница |q| числа рвущихся и образующихся связей не превышает 1
|q| 1,
независимо от знака H0 элементарной стадии. Согласно этому правилу реакция (37) также не является элементарной (|q| = 2).
Заключение
Сформулируем набор правил для отбора термодинамически разрешенных термических ЭС. Элементарными реакциями, в первом приближении, можно считать реакции, для которых:
-
молекулярность прямой и обратной реакций меньше или равна 2 ( 2);
-
число рвущихся связей не отличается от числа образующихся более, чем на 1 (правило компенсации связей |q| 1);
-
занятые граничные орбитали реагентов коррелируют по симметрии с занятыми граничными орбиталями продуктов (граничные орбитали донора и акцептора имеют одинаковую симметрию);
-
топология перераспределения связей (топологическая структура переходного состояния) является линейной или циклической.
Принцип наименьшего движения можно рассматривать как дополнительное правило самого общего характера.
Вопросы для самоконтроля
-
Назвать основные законы, правила и принципы в теории элементарных стадий.
-
Перечислить правила отбора ЭС.
-
Рассчитать число электронов в валентной оболочке металла в соединениях: K2ReH9, Mn2(CO)10, (3–C3H5)NiCl(PR3)2, Na2PtCl6, OsO4, NOsCl3,
(6–C6H6)2Cr, HNiL4+, K4Pd(CN)4. -
Определить, может ли реакция
быть элементарной стадией.
-
Определить, какая из двух реакций пойдет быстрее и во сколько раз (298К):
∆H10 = – 48.1 кДж/моль
∆H20 = –36.3 кДж/моль
Литература для углубленного изучения
-
Гаммет Л., Основы физической органической химии, М., Мир, 1972.
-
Денисов Е.Т., Саркисов О.М., Лихтенштейн Г.И., Химическая кинетика, М., Химия, 2000, 566 с.
-
Хоффман Р., Механизмы химических реакций, М., Химия, 1979.
-
Клопман Г., Общая теория возмущений и ее применение к химической реакционной способности, в кн.: “Реакционная способность и пути реакций”, под. ред. Клопмана Г., М., Мир, 1977, с. 64.
-
Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, М., Мир, 1971.
-
Temkin O.N., Zeigarnik A.V., Bonchev D.G. Chemical Reaction Networks. A Graph-Theoretical Approach. CRC Press, Boca Raton, 1996, 286 p.















