165843 (739976)

Файл №739976 165843 (Исследование электрохимического механизма проницаемости плацентарных мембран по анионам антибиотиков в малоамплитудных физических полях)165843 (739976)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

На правах рукописи

СОРОКИНА ТАТЬЯНА ЕФИМОВНА

ИССЛЕДОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОГО МЕХАНИЗМА ПРОНИЦАЕМОСТИ ПЛАЦЕНТАРНЫХ МЕМБРАН ПО АНИОНАМ АНТИБИОТИКОВ В МАЛОАМПЛИТУДНЫХ ФИЗИЧЕСКИХ ПОЛЯХ

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

2000


ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Актуальность проблемы

Со времени открытия бензилпенициллина А. Флемингом антибиотики являются одним из наиболее эффективных средств борьбы с жизненно опасными инфекционными заболеваниями. Однако, весьма часто встречается ситуация, в которой патологический орган-мишень является труднодоступным для попадания в него молекул антибиотика и/или имеет развитые защитные биологические барьеры, эффективно препятствующие этому попаданию. В качестве примеров таких органов можно назвать глаза, предстательную железу, пародонтальные ткани, плаценту и т.д. Поэтому имеются трудности для получения необходимой локальной концентрации антибиотика в патологическом очаге, и при инъекциях или пероральном приеме часто в нужное место попадает не более общей дозы. Лечащему врачу приходится увеличивать прием антибиотиков, что может привести к различным побочным эффектам и осложнениям антибиотиковой химиотерапии.

Вопросами транспорта лекарств в организме занимается сравнительно молодая и бурно развивающаяся отрасль медицины - фармакокинетика, ко­торая использует формальные аналогии таких процессов как всасывание лекарств; их распределение по тканям и органам, метаболизм, экскреция с тем или иным разделом химической кинетики.

Вместе с тем, на наш взгляд, традиционный фармакокинетический подход не учитывает некоторых важных электрохимических особенностей, присущих как лекарствам-антибиотикам, так и тканям организма, в которые они вводятся. Действительно, почти все широко распространенные в химиотерапии антибиотики либо присутствуют в форме солей, либо являются диссоциирующими в плазме крови на гидратированные протоны и сложные органические анионы.

Поэтому представляется достаточно очевидной необходимость учета взаимодействия анионов антибиотиков с распределенным зарядом тканей организма при описании химиотерапевтического транспорта. Фармакокинетика не рассматривает также и влияние различных физических полей на транспорт лекарств, которое широко известно из практики физиотерапии с применением электрических, магнитных, радиочастотных, СВЧ и лазерных электромагнитных полей, ультразвука и т.п. Все эти малоамплитудные полевые воздействия на организм обладают форетическими эффектами по отношению к лекарственным препаратам, наиболее широко известным из которых является электрофорез.

Все вышеизложенное позволяет отнести тему нашей работы по исследованию механизма проницаемости плацентарных мембран по анионам антибиотиков в малоамплитудных физических полях к новому актуальному научному направлению – электрохимической кинетике.


Цель работы

На основании теоретических и экспериментальных исследований определить особенности электрохимического механизма и кинетики переноса анионов антибиотиков (бензилпенициллина, оксациллина, левомицетина) в физиологическом растворе через препарированные плацентарные мембраны ускоряющем влиянии электрического, магнитного, радиочастотного, СВЧ, лазерного, злектромагнитных полей и ультразвука. Рассмотреть возможность синергетических эффектов стимулирования переноса антибиотиков с определением оптимального числа смешанных малоамплитудных полевых воздействий как основы приборов физиотерапии нового поколения. Провести анализ клинической эффективности применения этих приборов в стомaтoлoгии.

Научная новизна

впервые фармакокинетические характеристики молекул лекарств-антибиотиков через ткани организма связаны как с их электролитической анионной диссоциацией, так и с наличием стохастических мембранно-связанных модифицированной с учетом этих электрохимических аспектов модели «рыхлого квазикристалла».

впервые сформулированы теоретические математические модели ускоряющего влияния малоамплитудных физических полей на электрохимическую кинетику переноса анионов антибиотиков в тканях организма («рыхлых квазикристаллов») по механизмам изменения симметрии распределения зарядов на границах биологических мембран с межклеточной жидкостью (электрические и магнитные поля), дополнительной внутритканевой генерации тепла (электромагнитные и ВЧ-ультразвуковые поля) и дополнительной механической стимуляции направленным потоком колебаний биосреды распространения (НЧ-ультразвуковые поля);

в экспериментах с препарированными плацентарными мембранами впервые была доказана адекватность вышеупомянутой модифицированной модели «рыхлого квазикристалла» как для собственного, так и для физически стимулированного плацентарного переноса анионов левомицетина, бензилпенициллина и оксациллина, начиная со времен, много меньших периодов полураспада этих антибиотиков по липидным «кинковым» каналам проводимости с коэффициентами диффузии 2,6-1(Г8-2,6-1(Г7 см2/с, с энергией активации 7,9-13,4 кДж/моль, удельной электропроводностью плацент 2,04-10» 7 См/см при ускоряющем сдвиге их потенциалов асимметрии порядка нескольких десятков милливольт; при экспериментальных исследованиях влияния магнитных полей на электрохимическую кинетику переноса аниона левомицетина впервые были обнаружены артефакты в виде преобладания ускоряющего действия постоянного поля с «северной» ориентацией и магнитомеханических резонансов левомицетиновой проницаемости плацент при частотах вращения синусоидальных и пульсирующих полей 0,6 и 10 Гц;

  • на основе проведенных теоретических и экспериментальных исследований впервые была построена математическая модель смешанных синергетических полевых воздействий в малоамплитудном приближении, согласно которой результирующий коэффициент ускорения трансмембранного переноса ионов представляет собой произведение частных коэффициентов ускорения - «электрического», термического и механического;

  • расчеты по синергетической модели и экспериментальным коэффициентам ускорения плацентарного переноса анионов левомицетина, бензилпенициллина и оксациллина в индивидуальных физических полях впервые показали, что результирующий коэффициент ускорения нарастает с числом смешения полей по экспоненциальному закону. Суммарный фактор системных реакций организма (биопараметричность) увеличивается пропорционально числу смешения, а энергетическая сенситивность тканей (плацент) изменяется немонотонно, и ее максимум приходится на число смешения, равное двум;

  • с помощью комплексного индекса оптимизации (КИО) по трем вы­ходным параметрам - результирующему коэффициенту ускорения, суммарной биопараметричности и безразмерному коэффициенту сенситивности впервые были определены оптимальные числа смеше­ния полей от 2 до 4, обеспечивающие плато одинаковых максималь­ных значений КИО и оптимальность конструкции аппарата антибиотиковой физиотерапии на сочетанных полевых эффектах.


Практическая ценность

Результаты работы учитывались при конструировании физиотерапевтической аппаратуры типа «Атос», «Атос-А», «Атос-МнДЭП», «Интрамаг», «Интратерм», «Ласт-1», «Ласт-2» и т.д., выпускаемой ООО «ТРИМА» в г. Саратове, а также использовались практикующими соответствующие антибиотиковые физиотерапевтические процедуры врачами-урологами, стомато­логами, офтальмологами. Конкретные данные по стимулированной антибиотиковой проницаемости плацент представляют интерес для врачей-гинекологов.

Материалы диссертации используются при чтении курса лекций и проведении лабораторных работ по биофизике студентам IV курса кафедры МВПО СГТУ.


Апробация работы

Результаты диссертационной работы доложены и обсуждены на Всероссийской конференции «Электрохимия мембран и процессы в тонких ионопроводящих пленках» (г. Энгельс), конференции «Современные проблемы теоретической и экспериментальной химии» (г. Саратов), Всероссийской конференции молодых ученых «Актуальные проблемы электрохимической технологии» (г. Энгельс, 2000), 5-й Международной конференции «Современные проблемы имплантологии» (г. Саратов, 2000).


Публикации

Основное содержание работы опубликовано в 10 статьях и тезисах док­ладов конференций.

Основные положения, выносимые на защиту

  1. Схемы диссоциации исследуемых антибиотиков.

  2. Теория переноса аниона антибиотика в тканях организма по модели «рыхлого квазикристалла».

  3. Методика эксперимента.

  4. Собственный антибиотиковый форез в плацентах.

  5. Антибиотиковый электрофорез в плацентах.

  6. Антибиотиковый магнитофорез в плацентах.

  7. Антибиотиковый СВЧ-форез в плацентах.

  8. Антибиотиковый лазерофорез в плацентах.

  9. Антибиотиковый НЧ и ВЧ-сонофорез в плацентах.

  10. Синергетические полевые эффекты антибиотикового анионного пе­реноса в плацентах по модели «рыхлого квазикристалла».

  11. Учет системных реакций организма и энергетической сенситивности тканей.

  12. Оптимизация числа синергетических полевых воздействий в аппара­тах антибиотиковой физиотерапии. Корреляция с терапевтическим эффектом.

  13. Выводы.


Структура и объем работы

Диссертационная работа состоит из введения, 4 глав, выводов, списка цитируемой литературы, включающего 335 источников, изложена на 250 страницах машинописного текста, содержит 30 рисунков и 20 таблиц.


СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулированы цели и задачи исследования, научная новизна и практическая значимость выполнен­ной работы.

В литературном обзоре (первая глава) проведен анализ состояния со­временных представлений о химическом составе, структуре, физико-химических и электрохимических свойствах биологических мембран и сделан вывод о применимости к описанию ионного переноса в надмембранных тканевых структурах организма модели «рыхлого квазикристалла» (первый раздел). Рассмотрены различные аспекты антибиотиковой физиотерапии в современной урологии, стоматологии и офтальмологии (второй раздел). Обоснована применимость к проблемам многопараметрической оптимизации физиотерапевтической аппаратуры комплексного индекса оптимизации (КИО), как многомерной функции входных параметров (третий раздел).

Во второй главе (теоретические исследования) сформулированы мате­матические уравнения ионного переноса в тканях организма в рамках модели «рыхлого квазикристалла» под действием собственной электрической асим­метрии межфазных границ с физиологическими жидкостями (первый раздел) и при дополнительном ускоряющем влиянии электрических (второй раздел), магнитных (третий раздел), СВЧ- (четвертый раздел), лазерных (пятый раз­дел) электромагнитных и ультразвуковых (шестой раздел) малоамплитудных физических полей.

Выяснено, что собственный перенос ионов в тканевых мембранах под­чиняется уравнению:

Сх=(С0-С,)-е-е±,

где С0 - исходная входная и С - текущая выходная концентрация переносимого иона, X - толщина мембраны, D - коэффициент транскорпоральной диффузии иона, т - время переноса, z - заряд иона, F = 96487 Кл/моль, R = 8,314 Дж/(моль-К), Т- абсолютная температура, (ра - собственный потенциал электрической асимметрии межфазных границ, знак «+» относится к переносу катионов и знак «-» соответствует переносу анионов. Построением в координатах In С(Со - С) - определяется D - по угловому коэффициенту прямых и фа - по отрезку, отсекаемому на оси ординат.

Все малоамплитудные физические поля, перечисленные выше, оказывают ускоряющее влияние на транскорпоральный электромиграционный перенос ионов, и коэффициенты ускорения могут быть выражены с помощью общей формулы:

Ку = Куе -г, (2)

где Ку — коэффициент ускорения транскорпоральной диффузии ионов, Дфа -стимулированный полем сдвиг потенциала электрической асимметрии, и -порядковый номер поля. Величины Ку и AM приведены в табл. 1, причем параметры cpMNS » Дфаэм . Афщ, , Дфауз не поддаются теоретическому расчету и подлежат экспериментальному определению. Остальные физические величины расшифрованы в соответствующих разделах диссертации и они означают: V— напряжение электрического поля, - сила тока, Rm - сопротивление мембраны, фмд/ и (pus — потенциалы «омагничивания» при влиянии постоянного магнитного поля «северной» или «южной» ориентации, pMN = фр или ф, В - магнитная индукция, г0 - радиус кругового источника вращающихся магнитных полей, - частота синусоидального или пульсирующего магнитного поля, - частота вращения магнитного поля, An - энергия активации транскорпоральной ионной диффузии,- частота СВЧ-излучения, е0 = 104/36t Ф/м, с'- действительная часть относительной диэлектрической проницаемости мембраны, tg 6 - тангенс угла диэлектрических потерь, Е0 - амплитудная напряженность электрического ноля СВЧ-излучения, р и ср - плотность и теплоемкость мембраны, а к К — коэффициенты температуро- и теплопроводности мембраны, - коэффициент теплообмена, га - радиус сфокусированного лазерного луча, Wu - интенсивность лазерного облучения, v - скорость сканирования «пятна» лазерного излучения, и — частота и интенсивность ультразвука, с - скорость распространения ультразвука, т0 - время нахождения иона в узле стохастической квазирешетки, - глубина узловой потенциальной «ямы», Дф, Аф A

В третьей главе (экспериментальные исследования) приведены характеристики объектов и методики эксперимента (первый раздел), изучены параметры собственного и стимулированного переноса анионов антибиотиков через плацентарные мембраны (второй раздел), а также рассмотрены синергетические эффекты ускорения переноса при смешанном влиянии малоамплитудных физических нолей (третий раздел).

В качестве объектов исследования были выбраны препарированные в формальдегиде ювенильные ткани плацент со средней лазерно-иитерферометрической толщиной X ~ 0,1 мм и антибиотики левомицетин, бензил пенициллин, оксациллнн (р-лактам), разведенные в терапевтических концентрациях 0,2 м каждый в изотоническом физиологическом растворе 0,9 мае. NaCl. Растворы с антибиотиками помешались над плацентарными мембранами в специальных стеклянных электрохимических ячейках, и исследования кинетики переноса производились посредством отбора проб из подмембраиного пространства после предварительного перемешивания. Пробы анализировались фотометрически на приборе СФ-2 в диапазоне длин волн 265- 300 нм со средней относительной погрешностью 3,5 %.

В качестве источников мал о амплитудных полевых воздействий применялись приборы Б5-43, «Атос», ЛТН-101, УЗУ-0,25 с заменой одного из трех НЧ-излучателей УЗ-колебаний на ВЧ-излучатель, Влияние СВЧ-излучения моделировалось термостатическим нагревом ячейки с 309,7 до 317 К. Термостат MWL поддерживал температуру 309,7 К (36,7 °С) во всех остальных экспериментах с точностью ±0,05 А'.

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6749
Авторов
на СтудИзбе
283
Средний доход
с одного платного файла
Обучение Подробнее