165735 (739923), страница 2

Файл №739923 165735 (Геометрия молекул. Теория ЛЭП. Элементы стереохимии) 2 страница165735 (739923) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

(Координационное место пустышки – понятием молекулярная структура игнорируется - как бы не в счёт, хотя именно она определяет структуру).

7) Молекулы соединений элементов 6-й группы. У центрального атома 6 валентных электронов. К шестивалентному центру поступают ещё 6 от 6 лигандов. Эти 6 пар требуют 6 координационных мест. Формула валентной оболочки центрального атома MX6 (полная структура). Геометрия таких молекул октаэдрическая. Таковы SF6, SeCl6... .

Если же центральный атом из 6-й группы лишь 4-х валентен, то формула оболочки центра MX4E (осколочная структура). Ей отвечает геометрия бисфеноида. Центру следует приписать 10 электронов - 5 пар, и основная структура для них – тригональная бипирамида с её 5-ю координационными местами. В 4-х координационных местах размещены лиганды, а их, как всегда, теснит пятая пара–“пустышка”. Она занимает более “комфортное” экваториальное место. На экваторе остается ещё два места, но валентный угол между ними меньше 1200, - их потеснит холостая пара. Два оставшихся атома занимают аксиальные положения, и поскольку они тоже оттеснены пустышкой от оси, то валентный угол между ними меньше 1800. Бисфеноид напоминает коромысло, поперёк которого повисли две руки. Согласно теории ЛЭП это осколок тригональной бипирамиды. Таковы структуры SF4, SeCl4, TeCl4, ...

9) Наконец, возможен и двухвалентный атом 6-й группы. Два лиганда добавят два электрона, и в поле центра окажется 8 электронов. Образуя 4 пары, они порождают 4 координационных места в вершинах тетраэдра. Формула оболочки центра MX2E2 (осколочная структура). 2 пары занимают 2 вершины тетраэдра, и 2 лиганда располагаются в 2 оставшихся вершинах, а валентный угол вновь уменьшен по сравнению с тетраэдрическим. Он меньше 104028’. Эти структуры угловые. Таковы молекулы H2O, H2S, SCl2, SeCl2, TeCl2, ...

10) Структуры с 7-ю валентными парами у центра разнообразны. Варианты основной геометрии существенно меняются в зависимости от центрального атома или иона. Единого простого полиэдра, подходящего для построения полной структуры на основе центра из 7-й группы, уже нет. Единственный как бы простой случай полной структуры – у молекулы IF7 имеет место структура пентагональной бипирамиды. А вот у XeF6 также 7 пар в валентной оболочке центра, но уже иная структура – одношапочного октаэдра (см. рис.)

Наглядны и достаточно стандартны осколочные структуры. К ним и обратимся.

Если в поле элемента 7-й группы попадает 5 одновалентных лигандов, получаются 6 валентных пар. 1 из них холостая. Формула конфигурации центра MX5E. Основа геометрической структуры – осколок октаэдра. В его “ущербной“ аксиальной вершине 1 холостая пара, оттесняющая от идеальных положений прочие 5 связывающих пар. Получается структура квадратной пирамиды, или точнее “квадратного зонтика”, поскольку центральный атом лежит ниже плоскости четырёх лигандов.

Таковы ClFl5; BrCl5; BrF5; ...

Если в поле элемента 7-й группы попадает 3 одновалентных лиганда, приходим к 5 валентным парам. Две из них холостые. Формула конфигурации центра MX3E2. Основа геометрической структуры – осколок тригональной бипирамиды (или двойной осколок бисфеноида). В его “ущербных” вершинах – экваториальные холостые пары, теснящие 3 связывающих. Две аксиальные пары отклонены от общей с центром оси в одну и ту же сторону. Получается структура буквы Т с валентными углами менее 900. Таковы ClFl3; BrCl3; BrF3 ...

11) Не являются исключением для теории ЛЭП соединения инертных газов. Есть смысл рассматривать осколочные структуры типа молекул XeF2, XeF4, ... их геометрия определяется теми же правилами.

В оболочку атома Xe в молекуле XeF2 попадает 5 пар. Основа структуры – осколок тригональной бипирамиды. 3 неподелённые пары занимают экваториальные положения, располагаясь в трёх вершинах в плоскости равностороннего треугольника. Связывающие пары связей XeF менее объёмны, и занимают аксиальные положения на одной оси с центром. Ядерный остов линейный, но истинная основа геометрии это молекулы – тригональная бипирамида.

В оболочке атома Xe в молекуле XeF4 содержится 6 пар. Основа структуры – октаэдр. 2 неподелённые пары располагаются на одной оси с центром. Менее объёмные связывающие пары связей XeF занимают 4 положения в общей плоскости с центром. Молекула квадратная, но её ЛЭП-основа – октаэдр.

В оболочке атома Xe в молекуле XeF6 содержится 7 пар. Основа этой структуры в теории ЛЭП – так называемый одношапочный октаэдр. Это менее симметричная структура, но тем не менее, у неё сохраняется ось симметрии третьего порядка, проходящая через ось орбитали непо делённой пары, а также через центры двух плоскостей, в которых лежат треугольники, образованные двумя тройками атомов лигандов F’ и F”.

12) Имеются соединения и с большим числом электронных пар...

Их примеры приведены в замечательной классической монографии Рональда Гиллеспи “Геометрия молекул”, а также в более новой монографии Р. Гиллеспи и И. Харгиттаи “Модель отталкивания электронных пар валентной оболочки и строение молекул”.

Резюме: Структуры, отвечающие определённому числу электронных пар, в валентной оболочке центрального атома могут быть полными и осколочными.

Геометрия полной структуры -правильный полиэдр. Во всех вершинах полиэдра у полной структуры находятся лиганды, их число равно формальной валености центрального атома, т.е. номеру группы центрального атома.

Геометрия осколочной структуры -осколок правильного полиэдра. В одной или нескольких вершинах теоретического полиэдра находятся неподелённые пары. Оставшиеся вершины заняты лигандами, их число меньше номера группы центрального атома. Валентные углы меньше, чем в правильном полиэдре. Осколочные структуры образуются при пониженной валентности центрального атома.

Следующие примеры приводятся для упражнений.

Соединения с кратными связями.

Аналогично рассматриваются и другие, в том числе некоторые когда-то казавшиеся невероятными структуры. В некоторых из них у лигандов кратные связи.

В качестве примеров можно рассмотреть молекулы

SF3N; SF4O; SO2; IF5O; IO3-; IF2O2-; XeO2; XeF2O2;...

1) Молекула SF3N.

У центра 6 cсобственных валентных электронов, от лигандов ещё 3+3. Всего 6 пар. Тройная связь SN обслуживается 3-мя парами, которые занимают 1 координационное место. Остальные 3 пары связывающие и обслуживают 3 одинарные связи SF, занимающие 3 координационные места. Всего возникают 4 координационные места. Основа структуры – тетраэдр. Тройная связь занимает больший объём и, отталкивая, теснит связи SF, атомы F сближены, и валентные углы FSF меньше тетраэдрического значения 109028’. Валентный угол FSN, напротив, больше 109028’.

2) Молекула SF4O.

У центра 6 валентных электронов, от лигандов ещё 4+2. Всего 6 пар. Две из них принадлежат двойной связи, занимая одно общее координационное место в пространстве. Оставшиеся 4 пары связывающие и занимают 4 координационные места. Всего возникает 5 координационных мест. Основа структуры - тригональная бипирамида. Кратная связь =O имеет больший объём и находится на экваторе, отталкивая прочие связи. Все валентные углы FSF меньше идеальных. На экваторе – менее 1200, и аксиальные атомы отклонены от оси в направлении двух других экваториальных атомов, и валентный угол между ними менее 1800

3) Молекула SO2.

У центра 6 валентных электронов, от лигандов ещё 2+2. Всего 5 пар. В 2-х координационных местах расположены 4 пары 2-х двойных связей. Одно координационное место занято холостой парой. Всего же возникает 3 координационных места. Геометрия молекулы угловая. Валеный угол OSO больше идеального значения 1200 из-за взаимного отталкивания электронов двойных связей S=O.

4) Молекула IF5O.

У центра 7 валентных электронов, от лигандов ещё 5+2. Всего 7 пар, 1 связь двойная и 2 её пары занимают 1 координационное место. Отталкивая, она теснит остальные лиганды (связывающие пары), занимающие 5 координационных мест. Холостых пар 0. Основа структуры – немного деформированный октаэр, у которого 4 атома фтора сближены с одиночным, лежащим на общей оси с центром и атомом O. Все валентные углы FIF меньше 900, а валентный угол FIO больше 900.

5) Молекула IO3-.

У центра 7 валентных электронов, от лигандов ещё 2+2+2, и в состоянии аниона ещё один избыточный электрон . Всего 7 пар. На обслуживание 3-х двойных связей в трёх координационных местах выделено 6 пар. Одна пара остаётся холостой. В итоге для размещения 3-х двойных связей и 1 неподелённой пары используется 4 координационных места. Основа структуры – осколочный тетраэдр. Геометрия ядерного остова-тригональная пирамида. Кратные связи отталкивают друг от друга и неподелённую пару, и валентный угол OIO больше идеального тетраэдрического угла 109028’.

6) Молекула IF 2O2-.

У центра 7 валентных электронов, от лигандов ещё 2+4 и плюс 1 избыточный электрон в состоянии аниона. Всего 7 пар. На обслуживание 2-х двойных связей на 2-х координационных местах поступают 4 пары, остаётся 1 неподелённая пара. В итоге для размещения 4-х лигандов и 1-й неподелённой пары необходимо 5 координационных мест. На экваторе располагаются 2 связи I=O и 1 неподелённая пара. Две связи I-F отклонены от оси F-I-F в направлении одиночной неподелённой пары, поскольку превалирует отталкивание от двух двойных связей I=O вследствие их большего объёма.

7) Молекула XeO2.

У центра 8 валентных электронов, от лигандов ещё 2+2. Всего 6 пар. На обслуживание 2-х двойных связей на 2-х координационных местах поступают 4 пары, остаются 2 неподелённые. В итоге для размещения лигандов и 1-й неподелённой пары необходимо 4 координационных места. Геометрия молекулы – осколочный тетраэдр с валентным углом O-Xe-O, увеличенным по сравнению с тетраэдрическим, поскольку объём кратных связей больше неподелённых пар.

8) Молекула XeF2O2.

У центра 8 валентных электронов, от лигандов ещё 2+4. Всего 7 пар. Для обслуживания занятых лигандами 4-х координационных мест, выделено 2+4=6 пар, остаётся 1 холостая пара. В итоге для размещения лигандов и 1-й неподелённой пары необходимо всего 5 координационных мест. Основа структуры – бисфеноид (осколок тригональной бипирамиды). На экваторе – атомы O и 1 холостая пара. Атомы F могут занимать лишь аксиальные положения, но при этом отклонены от оси связей F-Xe-F в направлении холостой пары, больше отталкиваясь от более объёмных связей Xe=O.

Так можно обсуждать структуру многих молекул, и молекулярных ионов. У молекулярных ионов следует дополнительно добавить электроны (у анионов) или вычесть (у катионов) электронов, формируя необходимую “стереохимическую электронную ЛЭП-конфигурацию” центрального атома. (Осторожно! Термин нестандартный)

Резюме: Изложенным правилам и приёмам можно придать простую

математическую форму.

  1. Пусть в молекуле центральный атом M, является атомов sp-элемента и содержит всего G электронов на АО валентного уровня, и лиганды (L’;L”;L’”) содержащиеся в количествах (l’;l”;l’”), образуют связи разной кратности, например (1,2,3). Формулу молекулы запишем в виде M(L’)l(L”)l(L’”)l’”.

  2. Число B всех связывающих пар X центра с лигандами равно полному числу образуемых лигандами (и центром) связей: B =(1l’+2l”+3l’”).

  3. Число всех электронов, приписываемых к валентной оболочке центрального атома, равно сумме всех G электронов валентного уровня центра с числом B. Половина суммы и есть искомое число всех пар: A=(G+B)/2=(G+1l’+2l”+3l’”)/2.

  4. Число неподелённых пар E центра M, которые, как и лиганды, также занимают координационные места у центра, равно разности:

AB=(G+1l’+2l”+3l’”)/2(1l’+2l”+3l’”)=(G1l’2l”3l’”)/2.

  1. Число k образуемых в поле центра координационных мест равно числу k вершин полиэдра – трафарета структуры молекулы. Оно складывается из числа лигандов и числа неподелённых пар, т.е.

k =l’+l”+l’”+AB.

Так получаем структуру вида MXnEm в виде MX l’+l”+l’”EA-B.

  1. Искажение валентных углов вызывают:

  • в первую очередь кратные связи,

  • во вторую очередь неподелённые пары,

  • затем связывающие пары в порядке убывания их объёма (увеличения электроотрицательности).

  • объёмные заместители сложные искажают структуру подобно неподелённым парам.

Гибридизация АО центрального атома.

Характеристики

Тип файла
Документ
Размер
1,24 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6768
Авторов
на СтудИзбе
281
Средний доход
с одного платного файла
Обучение Подробнее