165697 (739905), страница 3
Текст из файла (страница 3)
подавлению вирусов гепатита С, герпеса и гриппа;
улучшению общего самочувствия;
обеспечению ускоренного роста и созревания растений без использования химикатов, например овощей в тепличных хозяйствах.
Двухступенчатое озонирование в технологии очистки диффузионного сока
Для очистки соков свеклосахарного производства в качестве основных реагентов используют известь и диоксид углерода. Один из путей совершенствования технологии очистки сахарсодержащих растворов — использование окислителей как дополнительных реагентов очистки с целью повышения показателей качества получаемых продуктов, а также снижения расхода извести и диоксида углерода [3].
Вместе с тем одна из проблем развития современных технологий — проблема экологии. Применение различных химических препаратов на всех стадиях производства приводит к постепенному их накоплению в окружающей среде и в конечном счете к отрицательному воздействию на качество продукции [1].
Озон как естественное природное вещество с этой точки зрения экологически безопасен. Он не накапливается в окружающей среде, активно вступает в реакции с различными группами соединений и быстро разлагается на молекулярный и атомарный кислород. Продукты реакций озона, в основном окислы, также не являются токсичными или вредными соединениями, как, например, большинство хлороргани-ческих соединений, при этом данный окислитель способен разлагать такие вещества, как пестициды и другие химикаты, до более безопасных форм [2]. По действию на живые объекты озон может проявлять как стимулирующую, так и биоцидную направленность, а также способен замедлять процессы метаболизма живой клетки.
Ранее нами были проведены исследования воздействия озонирования на качественные показатели очистки при обработке сока основной дефекации. Опыты проводили по классической известково-углекислотной схеме с включением элемента озонирования. Установлено, что целесообразно проведение комбинированной очистки диффузионного сока с применением озона при температуре 80''С, его концентрации в озоно-воздушной смеси 7 г/м^ и расходе 3,25 м^ смеси на 1 м3 сока [5, 6].
Такая одноступенчатая обработка не позволяет в полной мере удалить красящие вещества, поскольку в процессе дальнейшей очистки образуются новые темно-окрашенные соединения, а также другие растворимые несахара. В связи с этим проведены исследования по разработке способа очистки диффузионного сока с использованием двукратного введения озона: на горячей ступени основной дефекации и на дополнительной дефекации перед II сатурацией.
Предусмотренное количество озоно-воздушной смеси 0,5-3,0 м3 на I м3 сока с концентрацией в ней озона 3-10 г/м^ делили на две равные части и подавали на горячую ступень основной дефекации и на дополнительную дефекацию перед II сатурацией.
Диффузионный сок направляли на прогрессивную преддефекацию до рН 10,8-11,2 при температуре 54...56 °С, комбинированную основную дефекацию с расходом извести 2,0-2,5 % к массе сока, в процессе проведения горячей ступени основной дефекации сок обрабатывали одной частью диспергированной озоно-воздушной смеси. Далее осуществляли I сатурацию при температуре 85...90 °С до конечного значения рН 10,8-11,2, отделение осадка путем фильтрования, дефекацию перед II сатурацией продолжительностью 4-6 мин при температуре 80...85 °С и расходе извести 0,2-0,3 % к массе сока. В процессе дефекации перед II сатурацией сок обрабатывали второй частью диспергированной озоно-воздушной смеси. Далее проводили II сатурацию при температуре 85...90 °С до конечного значения рН 9,0-9,5 и отделение осадка путем фильтрования. Полученный сок анализировали. Результаты представлены в таблице.
| Способ проведения очишенного сока | Показатели очишенного сока | ||
| Чистота % | Цветность усл. Ед. | Эффект очистке, % | |
| Предолженный | 91,37 | 12,41 | 38,96 |
| Типовой | 90,42 | 15,94 | 31,53 |
Примечание. Чистота диффузионного сока 86,6%.
При обработке сока озоно-воздушной смесью в процессе основной дефекации происходит интенсивное разложение моносахаридов, продукты распада которых в щелочной среде окисляются с образованием постоянных бесцветных соединений вместо того, чтобы конденсироваться в высокомолекулярные красяище вещества. Но процессы образования красящих веществ активно продолжаются в щелочной среде
на дефекации перед II сатурацией, что приводит к снижению эффекта, достигнутого при озонировании. Эту проблему позволяет избежать обработка сока озоном в две ступени: в процессе основной дефекации и в процессе дефекации перед II сатурацией. Таким образом, снижается цветность и предотвращается ее образование не только на основной дефекации, но и на дефекации перед II сатурацией [4].
Озонирование сока в процессе основной дефекации неразрывно связано с воздействием окислителя на значительную массу осадка, в связи с этим дополнительное количество озона расходуется на окисление органической части коагулята. В результате происходит пептизация осажденной массы и часть несахаров перехоз^т обратно в раствор, снижая чистоту сока. Двухступенчатая обработка озоно-воздушной смесью позволяет снизить объем продуваемого газа на основной дефекации, что сопровождается более низкой степенью пептизации несахаров. На второй ступени, при озонировании в процессе дефекации перед II сатурацией, происходит дополнительное окисление несахаров с образованием сложных промежуточных соединений, которые в процессе II сатурации адсорбируются на осадке карбоната кальция, повышая чистоту сока.
Таким образом, комбинированная очистка диффузионного сока с обработкой сока озоном в две ступени достаточно эффективна, так как при этом повышается эффект очистки на 7,4 %. Предложенный способ обеспечивает увеличение чистоты очищенного сока на 0,95 %, снижение его цветности на 22,1 % по сравнению с классической схемой очистки.
Влияние озонирования дефекованного сока на качественные оказатели очищенного сока
Применение окислителей в процессе очистки сахарсодержащих растворов приводит к значительному ингибирова-нию реакций образования темноокрашен-ных соединений и снижению цветности продуктов превращения редуцирующих веществ [4-6]. Результаты исследований воздействия окислителей и восстановителей на отдельные группы красящих веществ также свидетельствуют о преимуществе окислителей в области обесцвечивания сахарсодержащих растворов [2].
В данной работе проведено исследование процесса озонирования в условиях очистки диффузионного сока, в частности на этапе дефекации перед II сатурацией. Определяли влияние обработки озоном на чистоту, цветность, массовые доли солей кальция и редуцирующих веществ очищенного сока.
О
пыты проводили следующим образом. Диффузионный сок направляли на прогрессивную преддефекацию до рН 10,8-11,2 при температуре 54...56 °С, комбинированную основную дефекацию с расходом извести 2,0-2,5 % к массе сока. Далее осуществляли I сатурацию при температуре 85...90 °С, конечное значение рН 10,8-11,2, отделение осадка путем фильтрования, дефекацию перед II сатурацией продолжительностью 4-6 мин при температуре 80...85 °С и расходе извести 0,2-0,3 % к массе сока. В процессе дефекации перед II сатурацией сок обрабатывали озоно-воздушной смесью при температуре 60... 100 °С с расходом озоно-воздушной смеси 0,5-6,0 м3/м3 сока и концентрацией в ней озона 2-12 г/м3. Далее проводили II сатурацию при температуре 85...90 °С до конечного значения рН 9,0-9,5 и отделение осадка путем фильтрования. Результаты анализа очищенного сока представлены на рис. 1-4.
Из представленных графиков видно, что рациональные условия обработки озоном дефекованного сока следующие: температура 85 °С, расход озоно-воз-душной смеси 4,5 м3/м3 сока, концентрация озона 10 г/м3.
Насыщение полупродуктов озоном в процессе очистки диффузионного сока осуществляется с целью инициализации протекания дополнительных химических реакций, в результате которых происходит окисление целого ряда несахаров, сопровождающееся их распадом. Продукты распада, а также образовавшиеся промежуточные соединения впоследствии способны адсорбироваться на карбонате кальция. Некоторые соединения (например, гуминовые вещества) окисляются до диоксида углерода и воды [3]. При этом наблюдаются повышение чистоты и скорости седиментации, снижение фильтрационного коэффициента и цветности очищенного сока.
Озон обладает большой избыточной^, энергией молекулы (24 ккал/моль). При осуществлении технологических операций он легко взаимодействует с веществами щелочного характера, фенолсодержа-щими соединениями, макромолекулами белков, высокомолекулярными соединениями и др., что в большинстве случаев сопровождается их деструкцией и адсорбцией продуктов реакций на карбонате кальция. При этом снижается цветность и повышается эффективность удаления несахаров из очищенного сока [1].
В связи с высоким окислительным потенциалом молекулярного озона при обработке дефекованного сока происходит интенсивное разложение моносахаридов, продукты разложения которых в щелочной среде окисляются с образованием устойчивых бесцветных соединений, что предотвращает цветообразование.
Н
асыщение озоном промежуточных продуктов сахарного производства приводит к значительному снижению интенсивности их окраски, что объясняется воздействием растворенного озона на присутствующие в реакционной среде молекулы красящих веществ. При этом происходят окисление высокомолекулярных соединений и разрыв двойных связей углеродного скелета, чем и обусловлено снижение цветности и вязкости сахарсодержащего раствора.
В результате пониженной устойчивости несахаров в сильнощелочной среде с увеличением щелочности наблюдается интенсификация процессов окисления и разложения несахаров под действием озона. Образующиеся при этом озони-ды и молозониды могут реагировать с Са(0Н)2 с образованием нетоксичных соединений в виде осадка.
С
повышением температуры сока растворимость озона в нём уменьшается, но, как известно, увеличивается скорость химических реакций и соответственно скорость взаимодействия озона с неса-харами, поэтому при увеличении температуры процесса до 80 °С происходит интенсификация разложения и удаления не-сахаров.Повышение температуры выше 80 °С приводит к увеличению цветности и снижению эффекта очистки за счет значительного снижения растворимости озона в реакционной среде, хотя скорость химических реакций при этом достаточно высокая.
Повышение концентрации или расхода озоно-воздушной смеси выше экспериментально установленных значений практически не вызывает изменения показателей качества очистки диффузионного сока, к тому же при этом снижается коэффициент утилизации озона и значительно увеличиваются энергетические затраты. Следовательно, проводить очистку при таких параметрах нецелесообразно.
Состав летучих компонентов безалкогольного пива, полученного в процессе аэрации
Для производства безалкогольного пива существует ряд побуждающих причин: все шире пропагандируется здоровый образ жизни; потребителями такого пива могут стать водители, которым не придется бояться негативных последствий; религиозные причины, накладывающие запрет на потребление алкоголя.
В настоящее время существует ряд технологий производства безалкогольного пива, которые условно можно подразделить на две группы: технологии, по которым подавляется процесс образования спирта, и технологии, где спирт удаляется из готового пива.
В первой группе технологий используют специальные штаммы дрожжей, не сбраживающие мальтозу в алкоголь (или сбраживающие в ограниченном объеме). Кроме того, при получении безалкогольного пива предотвращается образование спирта вследствие понижения температуры брожения по достижении определенной степени сбраживания. По этим технологиям производится пиво с высоким содержанием остаточных Сахаров и с преобладанием сладковатого привкуса. На вкус такого пива влияет отсутствие продуктов брожения. Данные сорта можно назвать скорее безалкоголь-пыми напитками, чем пивом. Во второй группе технологий алкоголь удаляется из готового пива одним из двух способов: термическим, когда алкоголь удаляется с помощью тепловой энергии с использованием низкой точки кипения алкоголя; мембранным с помощью мембран с очень мелкими порами для удаления алкоголя за счет различия в размере молекул.
Данная работа посвящена разработке технологии безалкогольного пива, основанной на ограничении образования этилового спирта за счет повышенной аэрации пивного сусла кислородом воздуха перед главным брожением. В результате происходит частичный перевод процесса брожения на процесс дыхания с последующим увеличением биомассы дрожжей и уменьшением образования спирта. В то же время из-за наличия некоторого количества в сусле несброженных Сахаров наряду с процессом дыхания идет и процесс брожения, в результате которого образуются вкусовые и ароматические веществ, обусловливающие букет зрелого пива.















