165635 (739873), страница 2
Текст из файла (страница 2)
+ Cl2 –––––––– + HCl.
AlCl3
2 Нітрування. Бензен реагує дуже повільно навіть з концентрованою HNO3 при нагріванні, але при дії на нього нітрувальною сумішшю (суміш концентрованих HNO3 i H2SO4) досить легко перетворюється на нітропохідні.
Електрофільною частинкою є нітроїл-катіон NO2+, який утворюється під впливом сірчаної кислоти:
HO-NO2(к) + 2H2SO4 (к) 2HSO4- + H3O+ + NO2+,
+ HO-NO2(к) -------- + H2O.
H2SO4 (к)
Бензен Нітробензен
3 Сульфування. Бензен сульфується при звичайній
температурі олеумом (розчин SO3 у 100% H2SO4) або чадною сірчаною кислотою, яка дає SO3 внаслідок встановлення рівноваги:
2H2SO4 SO3 + H3O+ + HSO4-.
Отже, електрофільним реагентом є сульфур(ІV) оксид, оскільки за рахунок трьох електронегативних атомів оксигену, які відтягують на себе електронну густину звязків S=О, на атомі сульфуру виникає великий дефіцит електронної густини і достатньо значний частковий позитивний заряд (3+). Реакція сульфування належить до оборотних процесів: при оброблюванні продукту перегрітою водяною парою проходить зворотна реакція – десульфування:
––––––––––––––––
––––––––––––––––.
H2O, 1500C (-H2SO4)
Бензен Бензенсульфонова кислота
4 Алкілування – реакція Фріделя-Крафтса – введення алкільної групи у бензенове кільце за наявності каталізаторів (кислот Льюїса) з утворенням гомологів бензену. Як алкілувальний реагент використовують галогеналкани СnH2n+1Hal, спирти CnH2n+1OH, алкени CnH2n, наприклад:
80о
+ CH3Cl –––––– + HCl.
AlCl3
Бензен Толуол
Каталізатор ініціює утворення електрофілу за схемою
СН3Cl + AlCl3 CH3+ + [AlCl4]-.
Реакції з алкенами і спиртами каталізуються найчастіше кислотами
0
оC
+ СH3-CH====CH2 –––,
HF
Ізопропілбензен (кумол)
O
H 60оC
+
СH3-C-CH3 –––––––––.
OH H3PO4 Трет-бутилбензен
5
Ацилювання – заміщення атома гідрогену в бензеновому кільці на ацильну групу RCO. Ацилювальним реагентом є галогенангідриди чи ангідриди карбонових кислот; при цьому одержують змішані ароматично-аліфатичні кетони.
O 80оC
+ СН3-С -------- + HCl
Cl AlCl3
Бензен Хлорацетил Ацетофенон
O
C
H3-C 80оC.
+ O -------- + CH3COOH
C
H3-C AlCl3
О
Бензен Ангідрид оцтової кислоти Ацетофенон
ІІ Реакції приєднання АЕ
Реакціі приєднання для ароматичних вуглеводнів не характерні, оскільки вони супроводжуються порушенням ароматичності і вимагають великої витрати енергії. Тому ці реакції проводяться в дуже жорстких умовах:
1 Гідрування (відновлення)
200оC, 50 Атм
+ 3Н2 –––––––––––– .
Ni
Бензен Циклогексан
Гідрування використовується для одержання циклогексану, який є, по-перше, добрим розчинником, а по-друге, – вихідною речовиною при добуванні адипінової кислоти, а з неї – капролактаму.
Реакція оборотна: при 3000С і нормальному тиску проходить зворотний процес.
2 Хлорування при інтенсивному ультрафіолетовому опромінюванні:
+
3Cl2 –––––––––
Гексахлорциклогексан (гексахлоран)
Гексахлоран – сильна харчова, контактна і дихальна отрута, застосовується як інсектицид: смертельна доза для мух становить усього 10-12 г.
ІІІ Реакції окиснення
Відмінною рисою ароматичних вуглеводнів є їх стійкість по відношенню навіть до сильних окисників. У звичайних умовах на них не діють ні концентровані кислоти, ні хромова суміш, ні розчин KMnO4. Однак у жорстких умовах вони піддаються окисненню:
О О
5
00оC НС С НС С О
+ О2 –––––– О–––– О
V2O5 НС С НС С
Бензен -2СО2 О О
-2Н2О
Малеїновий ангідрид Малеїнова кислота
Малеїновий ангідрид і малеїнова кислота використовуються у виробництві поліестерних смол, склопластику і лакофарбових матеріалів.
У живих організмах бензен під дією ферментів окиснюється до дуже шкідливої сполуки – муконової кислоти:
+ 2О2 ––––––– HOOC-CH=CH-CH=CH-COOH.
Бензен Фермент Муконова кислота
ВПЛИВ ЗАМІСНИКІВ НА РЕАКЦІЙНУ ЗДАТНІСТЬ АРОМАТИЧНИХ ВУГЛЕВОДНІВ
Найважливішим чинником, що визначає хімічні властивості речовин, є розподілення електронної густини в молекулах, яке залежить від взаємного впливу атомів і атомних груп. Якщо молекула містить тільки -звязки, взаємний вплив здійснюється через індуктивні ефекти, а в спряжених системах виявляється дія мезомерного ефекту.
Мезомерний ефект, або ефект спряження – це зміщення електронів, які утворюють -звязки спряженої системи, а також неподілених електронних пар атомів електронегативних елементів (0, S, N), що містяться у ланцюгу.
Замісники можуть виявляти позитивний мезомерний ефект (+М), якщо зміщують -електронну густину від себе, і негативний мезомерний ефект (-М), якщо зміщення електронної густини відбувається у протилежному напрямку.
Одна і та сама група атомів може виявляти одночасно два електронних ефекти: мезомерний і індуктивний. Обидва ефекти можуть як збігатися, так і не збігатися за напрямком свого впливу. Наприклад, аміногрупа NH2 виявляє негативний індуктивний ефект (–І), тобто зміщує електронну густину σ-зв’язку на себе, і в той же час – позитивний мезомерний (+М), завдяки якому π-електронна густина спряженої системи зміщується від аміногрупи. Найчастіше вплив мезомерного ефекту перебільшує дію індуктивного.
Молекула бензену – ця спряжена система з рівномірним і симетричним розподіленням шестиелектронної -електронної хмари. Однак наявність у бензеновому кільці замісника призводить до певного перерозподілу електронної густини і, як наслідок, до зміни реакційної здатності сполуки. Тобто замісник виявляє орієнтуючу (спрямовуючу) дію при введенні у кільце ще одного, нового замісника.
За характером орієнтуючої дії замісники поділяються на два типи.
Замісники І роду (елек–тронодонорні), які підвищують електронну густину бензенового кільця (особливо в о- і n-положеннях) і збільшують швидкість реакцій електрофільного заміщення SE. Такі замісники називаються активуючими.
До них належать атоми і атомні групи з позитивним мезомерним (+М) чи індуктивним (+І) ефектом (табл. 2).
Оскільки електроно–донорний замісник утворює з кільцем загальну спряжену систему, то відбувається перерозподіл електронної густини таким чином, що найбільша її частина зосереджується в о- і n-положеннях на атомах С – з цієї причини їх часто називають орто- і параорієнтантами. За рахунок виникнення часткових негативних зарядів (-) ці атоми карбону стають центрами електрофільної атаки. До того ж полярність звязків С-Н в о- і n-положеннях збільшується, тому зростає рухливість атомів Н, що полегшує їх заміщення.
Серед замісників І роду окреме місце займають галогени, які хоч і виявляють о- і n-орієнтуючу дію, але на відміну від інших електронодонорних замісників ускладнюють вступ нового замісника і сповільнюють швидкість реакції SE порівняно із бензеном. Така особливість галогенів поснюється тим, що їх негативний індуктивний ефект за абсолютною величиною перебільшує позитивний мезомерний ефект | -I| > |+M|.
Подвійний о- і n-орієнтуючий вплив електронодонорних замісників приводить до утворення внаслідок реакцій SE суміші ізомерів, наприклад:
+Н2О
+ HO-NO2 о-Нітрокумол
+ H2O
Кумол
n-Нітрокумол
Замісники ІІ роду (електроноакцепторні) – це метаорієнтанти, які знижують електронну густину бензенового кільця і зменшують швидкість реакцій електрофільного заміщення. Їх називають дезактивуючими замісниками (табл. 2).
Замісниками ІІ роду є атоми і атомні групи, які відтягують -електронну хмару бензенового кільця на себе завдяки негативному мезомерному (-М) чи негативному індукційному (-І) ефекту. Тому електронна густина на бензеновому кільці зменшується і внаслідок її перерозподілу лишається дуже незначний за величиною частковий негативний заряд (-) на атомах карбону в мета-положеннях. Отже, замісники ІІ роду зменшують реакційну здатність кільця в реакціях SE, однак напрямлюють нові електрофільні групи у мета-положення, хоч реакції SE проходять дуже повільно.
Таблиця 2 – Вплив замісників на реакційну здатність та напрямок реакцій електрофільного заміщення в ароматичному кільці
| Замісник | Тип електрон–ного ефекту | Вплив на реакційну здатність* | Переважна орієнтуюча дія |
| Замісники І роду | |||
| -NH2, -NHR, -NR2, OH- | +M >> -I | + + + | o-, n- |
| -O– | +M, +I | + + + | o-,n- |
| -NHCOCH3, -OCH3, (-OR) | +M > -I | + + | o-, n- |
| -CH3, -CnH2n+1 | +I | + | o-, n- |
| -C6H5, -CH=CH2, -CCH | +M > -I | + | o-, n- |
| -F, -Cl, -Br, -I | +M < -I | - | o-, n- |
| Замісники ІІ роду | |||
| -CN, -CH=O, -COR, -COOH, -COOR, -SO3H | -I, -M | - - | м- |
| -NR3+, -CF3, -CCl3 | -I | - - - | м- |
| -NO2, -N2+ | -I, -M | - - - | |
| * Активують сильно ( + + +), помірно ( + +) , слабо (+); дезактивують сильно ( - - -), помірно ( - - ), слабо ( - ). | |||
Наприклад, швидкість реакції нітрування нітробензену в 10000 разів менша, ніж швидкість нітрування самого бензену:
O3H2SO4, 250C
















