165525 (739791), страница 3

Файл №739791 165525 (Моделирование процессов переработки пластмасс) 3 страница165525 (739791) страница 32016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Ре = vd/a — критерий Пекле;

— критерий Гретца.

Известные в настоящее время результаты экспериментального исследования теплообмена в расплавах полимеров относятся пре­имущественно к течению в каналах круглого сечения. Общая фор­мула имеет вид:

(2.42)

где индексы «Ж» и «ст» Означают, что соответствующие значения критерия от­носятся к усредненным характеристикам жидкости или к характеристикам жид­кости в пристенном слое.

Значения показателей степени при критериях в уравнении (2.42) приведены ниже:

Таблица (3.1) Значения показателей степени при критериях подобия.

Полимер

А

X

У

Z

Z1

П Полиэтилен низкой плотности 16

0,33

0,33

0,15

0,33

П Полиэтилен низкой плотности 17

2,25

0,18

0,20

0,25

0

2.5. Лучистый теплообмен

Нагрев излучением применяется главным образом в операциях, предшествующих пневмо- и вакуум-формованию относительно тон­ких листов термопластов.

Лучистая энергия передается в виде электромагнитных волн, распространяющихся в пространстве до тех пор, пока на их пути не встретится какая-либо поглощающая среда: газ, жидкость или твердое тело. Излучаемая энергия пропорциональна четвертой степени абсолютной температуры изучающего тела. Так как обычно большая часть энергии излучения в применяемой на прак­тике области температур приходится на инфракрасный спектр, нагрев излучением называют также инфракрасным нагревом.

Гипотетическое тело, поглощающее все падающие на него лучи, называется абсолютно черным телом. Интенсивность лучеиспуска­ния абсолютно черного тела Еb определяется законом Стефана — Больцмана:

(2.43)

Где а — постоянная Стефана Больцмана, равная 1,36 • 10 -12 кал/(см2 • с • /K4), или

Реальные тела излучают меньше энергии. Их излучательная способность е оценивается по формуле:

(2.44)

где Е — интенсивность лучеиспускания реального тела.

Обычно ε зависит от температуры, увеличиваясь с ее ростом. Металлоиды и окислы металлов обладают высокой излучательной способностью (ε ≥ 0,8). У хорошо отполированных металлов из­лучательная способность невысока (ε ≤ 0,1) Реальные тела по­глощают только часть попадающего на них излучения.

Коэффи­циент поглощения определяется как отношение поглощенного из лучения к падающему.

При расчете лучистого теплообмена между черными телами под излучение попадает только та часть тела, которая просматривается с излучающего тела. Далее, интенсивность излучаемой энергии максимальна вдоль нормали к поверхности и равна нулю в тангенциальном направлении. Можно учесть взаимное расположение излучателя и облучаемого тела введением коэффициента видимости, учитывающего долю излучаемой энергии, которая попадает на облучаемое тело.

Допустим, что лучистая энергия, излучаемая от черной поверхности 1 на черную поверхность 2, равна E1A1F12 (A1 — площадь излучателя, F12 — доля энергии, попадающая на поверхность 2). Очевидно, что

A1F12 = A2F21 (2.45)

Поэтому количество тепла Q12, переданное при лучистом тепло­обмене от тела 1 к телу 2, равно:

Q12 = A1F12(E1-E2) (2.46)

Воспользуемся законом Стефана — Больцмана и получим:

(2.47)

Наконец, если T2/T1 << 1 то выражение (2.47) сводится к виду:

(2.48)

Для неабсолютно черных тел расчет осложняется наличием доли многократно отраженного излучения. В случае двух беско­нечных параллельных пластин общее количество тепла, передан­ного с единицы поверхности, выражается формулой:

(2.49)

где Fε — коэффициент излучения, равный:

(2.50)

Коэффициент теплопередачи h определится из выражения, анало­гичного по форме уравнению Ньютона:

(2.51)

Реальные полимеры и их расплавы плохо пропускают инфра­красное излучение. Поэтому падающая на них энергия превра­щается в тепло непосредственно на их поверхности. Некоторое количество выделяющегося тепла сразу же теряется на потери в виде собственного излучения и путем конвекции.

Поглощаемое тепло распространяется внутрь за счет процес­сов теплопроводности. Поэтому итоговое распределение темпера­тур в теле, нагреваемом лучистой энергией, зависит не только от мощности потока лучистой энергии, но также и от теплопроводно­сти и конвективных потерь.



3. СОСТАВЛЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ИССЛЕДУЕМОГО ПРОЦЕССА.

3.1. Специфика построения математических моделей описывающих термодинамические процессы

Разработанные методы анализа термодинамики процессов пере­работки полимеров позволяют устанавливать связь между основ­ными технологическими параметрами (давление, плотность, тем­пература) с достаточно высокой степенью точности. В настоящее время разработан весьма надежный математический аппарат, поз­воливший обобщить огромный экспериментальный материал.

Математические модели процессов теплопередачи базируются на математическом аппарате, разработанном в классических ис­следованиях теплопроводности в твердых телах. Общим недостат­ком известных решений является допущение о независимости теплофизических характеристик от температуры. Хорошо известно, что все термодинамические функции и теплофизические характерис­тики полимеров существенно зависят от температуры и давления. Поэтому при построении моделей реальных процессов следует об­ращать особое внимание на правильный выбор средних значений соответствующих характеристик.

3.2. Вывод дифференциального уравнения теплопроводности.

Для решения задач связанных с нахождением температурного поля необходимо иметь дифференциальное уравнение теплопроводности. Под дифференциальным уравнением понимают математическую зависимость между физи­ческими величинами характеризую­щими изучаемое явление, причем эти физические величины являются функциями пространства и времени. Такое уравнение характеризует протекание физического явления в любой точке тела в любой момент времени.

Дифференциальное уравнение теплопроводности дает зависимость между температурой, временем и координатами элементарного объе­ма.

Вывод дифференциального урав­нения сделаем упрощенным мето­дом. Предположим, что имеется од­номерное температурное поле (теп­ло распространяется в одном нап­равлении, например в направлении оси х ). Термические коэффициенты считаем не зависимыми от координат и времени.

Выделим в однородной и изотропной неограниченной пластине эле­ментарный параллелепипед, объем которого равен (рис. 3.1) Количество тепла, втекающего через левую грань в параллелепи­пед в единицу времени, равно а количество тепла, вытекающе­го через противоположную грань в единицу

времени, равно

Рис 1.3. Поток тепла через элементарный объём

Если , то элементарный параллелепипед будет нагреваться, тогда разница между этими потоками тепла по закону сохранения энергии равна теплу, аккумулированному данным элементарным парал­лелепипедом, т. е.

(3.1)

Величина есть неизвестная функция х. Если ее разложить в ряд Тейлора и ограничиться двумя первыми членами ряда, то можно написать:

(3.2)

Тогда из равенства (3.1) будем иметь:

(3.3)

Применяя уравнение теплопроводности , получим:

(3.4)

Уравнение (3.5) есть дифференциальное уравнение теплопроводности для одномерного потока тепла. Если тепло распространяется по нормали к изотермическим поверхностям, то вектор q можно разложить на три составляющие по координатным осям. Количество аккумулированного элементарным объемом тепла будет равно сумме

(3.5)

Тогда дифференциальное уравнение примет вид

(3.6)

Для симметричного одномерного температурного поля является функцией одной координаты. Поясним это на примере бесконечного круглого цилиндра. Если ось такого цилиндра совпадает с координа­той z, то температура в любой точке цилиндра будет зависеть только от координат х и у. При равномерном охлаждении или нагревании ци­линдра в любой точке, отстоящей на расстоянии r от оси цилиндра, температура в данный момент времени будет одна и та же. Следова­тельно, изотермические поверхности будут представлять собой цилин­дрические поверхности, коаксиально расположенные к поверхности ци­линдра. Между радиальной координатой r (радиус-вектор) и координатами х и у существует связь

r2 = х2 + у2. (3.7)

Тогда дифференциальное уравнение теплопроводности для бесконечного цилиндра можно преобразовать так:

(3.8)

для бесконечного цилиндра можно преобразовать так:

(3.9)

(3.10)

Дифференцируя (3.8) по х, а (3.10) по у, получаем

(3.11)

(3.12)

Складывая уравнения (3.11) и (3.12) и принимая во внимание (3.7), получим для уравнения теплопроводности следующее выражение:

В общем случае, когда температура зависит от всех трех координат (х, у, г), дифференциальное уравнение теплопроводности конечного ци­линдра имеет вид

; (3.13)

4 СОСТАВЛЕНИЕ АЛГОРИТМА


Для решения дифференциального уравнения теплопроводности бесконечного цилиндра воспользуемся методом сеток, суть которого заключается в разбиении координатной плоскости на равные части и вычислении значения искомой функции в узлах образуемой сетки. Используя значения функции в крайних точках можно последовательно вычислить её значение в любой части координатной плоскости.

; (4.1)

Заменим частный дифференциал разностным отношением:

; (4.2)

Осуществим следующее преобразование функции:

; (4.3)

; (4.4)

; (4.5) (4.6)

; (4.7)

; (4.8)

Подготовим уравнение (4.8) для рекуррентного вычисления в MatLab V6.0

Произведём переобозначения:

; (4.9)

; (4.10)

; (4.11)

; (4.12)

; (4.13)

Имеем формулу:

T(i+1,j+1)=T(i,j+1)+(a*dt/dr)*(((T(i,j+2)-2*T(i,j+1)+T(i,j))/dr)+((1/r)*(T(i,j+2)-T(i,j+1)))); (4.14)

В результате последовательных вычислений можно получить массив T характеризующий температурное поле неограниченного цилиндра в любой момент времени.

1.Программа начинается c задание переменных: начального и конечного момента времени, числа дискретных отсчётов по времени, радиус цилиндра и число его разбиений, констант характеризующих тепло-физические свойства полимера.

2.Следующим этапом является вычисление шага аргументов, по которым будет вычисляться исходная функция.

3.Краевые условия: значения искомой функции в начальный момент времени t0 = 0 в зависимости от радиуса, и температуры стенки литникового канала в любой момент времени задаются циклом For.

4.Каждому элементу вектора характеризующего температурное поле в начальный момент времени присваивается значение температуры, вычисленное как значение функции распределения вложенной в цикл. Число циклов присвоения значений вектору увеличивают на два так-так его элементов на один должно быть больше чем число интервалов разбиений и на одно значение больше, чтобы было возможным вычисление значения массива в центре цилиндра после перехода от внутреннего цикла к внешнему.

5.Каждому элементу вектора характеризующего температуру стенки канала в любой момент времени присваивается постоянное значение температуры Число циклов присвоения значений вектору увеличивают на один, так-так его элементов на один должно быть больше чем число интервалов разбиений.

6.Для вычисления матрицы определяющей температуру цилиндра по радиусу в любой момент времени используем два вложенных цикла For. Во внутреннем цикле предусмотрено изменение радиуса цилиндра, и вычисление температурного поля в заданный момент времени.

7.При переходе к внешнему циклу отсчёт по времени увеличивается на единицу. Значение производной температуры по радиусу в любой момент времени равно нулю и поэтому, чтобы учесть ещё одно краевое условие при переходе от внешнего цикла к внутреннему значение последней температуры копируется два раза.

8.После получения матрицы температур надо построить график. Чтобы координатные оси были проградуированные удобно для использования в матрице температур переставляют столбцы. Осуществляется это с использованием двух вложенных циклов.

9.Далее следует вывод графика и градуировка его осей.

5 СОСТАВЛЕНИЕ ПРОГРАММЫ


Программа для MatLab v6.0 R12 начинается очищения переменных графических окон функций и окна вывода результата. Осуществляют это с помощью: clear, clc, clf, clg

Чтобы программа была легка в использовании и проста в конфигурировании под любые задачи разработаем её используя понятные обозначения:

Задаём переменные:

начальный момент времени выбираем как t0=0;

конечный момент времени tk=120;

число дискретных отсчётов времени nt=120;

температура стенки Tc=30;

максимальная температура материала в середине цилиндра Tpol=170;

число дискретных отсчетов длинны цилиндра nR=10;

радиус цилиндра R=0.01 м;

температуропроводность полистирола a = 0.00000056 град/м с

Рассчитаем интервалы изменения температуры и радиуса

dr=R/(nR-1);

dt=(tk-t0)/(nt-1);

Присвоим начальные значения температуры стенки в цикле For:

for i=1:nt+1

T(i,1)=Tc;

end

Присвоим начальные значения температурного поля полимера в цикле:

for j=1:nR+2

T(1,j)=Tpol*exp(-2000*(R-dr*(j-1))^2);

end

Рассчитаем матрицу температурного поля T во вложенном цикле For:

for i=1:nt

for j=1:nR

r=R-dr*(j-1)+0.0001*dr;

T(i+1,j+1)=T(i,j+1)+(a*dt/dr)*(((T(i,j+2)-2*T(i,j+1)+T(i,j))/dr)+((1/r)*(T(i,j+2)-T(i,j+1))));

end

T(i+1,nR+1)=T(i+1,nR);

T(i+1,nR+2)=T(i+1,nR);

end

Изменим порядок расположения столбцов обработав массив в двойном цикле For :

for i=1:nt

for j=1:nR

TT(i,j)=T(i,nR-j+1);

end

end

Построим поверхность описывающую полученную функциональную зависимость T(t,r):

figure(1)

mesh(TT)

Подпишем координатные оси

xlabel('R, MM')

ylabel('t, cek')

zlabel('T C')

6 АНАЛИЗ МОДЕЛИРОВАНИЯ И РАСЧЁТОВ


В результате численного решения дифференциального уравнения с помощью составленной программы получены данные, хорошо согласующиеся с аналитическим решением дифференциального уравнения приведенным во второй главе данной пояснительной записки.

Результаты получаемые с помощью данной программы можно использовать для моделирований реальных технологических процессов связанных с охлаждением и нагреванием цилиндрических каналов.





СПИСОК ИСПОЛЬЗОВАНОЙ ЛИТЕРАТУРЫ

  1. Лыков А. В. Теория теплопроводности. М., ГИТТЛ, 1952. 391 с.

  2. Карслоу Г., Егер Д. Теплопроводность твердых тел. М., «Наука», 1964. 487 с.

  3. Кирпичев М. В., Михеев М. А. Моделирование тепловых устройств. М.,изд-во АН СССР, 1936. 255 с.

  4. Тябин Н. В. и др. В кн.: Теплообмен. 1974. Советские исследования. М., «Наука», 1975, с. 195—198.

  5. Торнер «Технология переработки пластмасс­», Москва, Московский политехи, ин-т, 1965, № 1, с. 138—143.

ПРИЛОЖЕНИЕ1

c lear, clc, clf, clg

t0=0;

tk=120;

nt=120;

Tc=30;

Tpol=170;

nR=10;

R=0.01;

dr=R/(nR-1);

dt=(tk-t0)/(nt-1);

a=0.00000056;

for i=1:nt+1

T(i,1)=Tc;

end

for j=1:nR+2

T(1,j)=Tpol*exp(-2000*(R-dr*(j-1))^2);

end

for i=1:nt

for j=1:nR

r=R-dr*(j-1)+0.0001*dr;

T(i+1,j+1)=T(i,j+1)+(a*dt/dr)*(((T(i,j+2)-2*T(i,j+1)+T(i,j))/dr)+((1/r)*(T(i,j+2)-T(i,j+1))));

end

T(i+1,nR+1)=T(i+1,nR);

T(i+1,nR+2)=T(i+1,nR);

end

for i=1:nt

for j=1:nR

TT(i,j)=T(i,nR-j+1);

end

end

figure(1)

mesh(TT)

xlabel('R, MM')

ylabel('t, cek')

zlabel('T C')

ПРИЛОЖЕНИЕ2

Характеристики

Тип файла
Документ
Размер
9,14 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6780
Авторов
на СтудИзбе
280
Средний доход
с одного платного файла
Обучение Подробнее