165431 (739669), страница 2
Текст из файла (страница 2)
Для ряда электроизоляционных материалов, в особенности хрупких, весьма важна стойкость по отношению к резким сменам температуры (термоударам), в результате которых в материале могут образовываться трещины.
В результате испытаний устанавливается стойкость материала к тепловым воздействиям, причем она в различны случаях может быть неодинаковой: например, материал, выдерживающий кратковременный нагрев до некоторой температуры, может оказаться неустойчивым, по отношению к тепловому старению при длительном воздействии даже при более низкой температуры и т.п. как указывалось, испытание на действие повышенной температуры иногда приходится указывать с одновременным воздействием повышенной влажности воздуха или электрического поля.
Холодостойкость. Во многих случаях эксплуатации важна холодостойкость, т.е. способность изоляции работать без ухудшения эксплуатационной надежности при низких температурах, например от -60 до -70 С. При низких температурах, как правило, электрические свойства изоляционных материалов улучшаются, однако многие материалы, гибкие и эластичные в нормальных условиях, при низких температурах становятся хрупкими и жесткими, что создает затруднения для работы изоляции. Испытания электроизоляционных материалов и изделий из них на действие низких температур нередко проводятся при одновременном воздействии вибраций.
Теплопроводимость. Практическое значение теплопроводимости объясняется тем, что тепло, выделяющееся вследствие потерь мощности в окруженных электрической изоляции проводниках и магнитопроводах, а также вследствие диэлектрических потерь в изоляции, переходит в окружающую среду через различные материалы. Теплопроводимость влияет на электрическую прочность при тепловом пробое и на стойкость материала к тепловым импульсам. Теплопроводность материалов характеризуют теплопроводностью т, входящей в уравнение Фурье
где, ∆P - мощность теплового потока сквозь площадку ∆S, нормальную к потоку , dT/dl - градиент температуры.
Значения удельной теплопроводимости некоторых диэлектриков приведены в таблице 1.
Таблица 1
Значения теплопроводимости некоторых диэлектриков
| Материал | , Вт/(м*К) |
| Фарфор Стеатит Двуокись титана Кристаллический кварц Алюминооксид Окись магния Окись бериллия | 1,6 2,2 6,5 12,5 30 36 218 |
Значения электроизоляционных материалов за исключением окиси бериллия меньше, чем большинства металлов. Наименьшими значениям , обладают пористые электроизоляционные материалы с воздушными включениями. При пропитке, а также при уплотнении материалов внешним давлением увеличивается. Как правило кристаллические диэлектрики имеют более высокие значения , чем аморфные. Величина несколько зависит от температуры.
Тепловое расширение диэлектриков, как и других материалов, оценивают температурным коэффициентом линейного расширения (ТКЛР), измеряемым в К-1 :
Материалы, обладающие малыми значениями ТКЛР, имеют, как правило, наиболее высокую нагревостойкость и наоборот.
В качестве примера в табл. 2 приведены средние ТКЛР некоторых электроизоляционных материалов в интервале 20-100 С.
Таблица 2
Температурный коэффициент линейного расширения некоторых диэлектриков
| Материал | l*106, К-1 |
| Поливинилацетат Поливинилхлорид Полиэтилен Ацетат целлюлозы Найлон Политетрафторэтилен Нитроцеллюлоза Полиметилметакрилат Полистирол | 265 160 145 120 115 100 100 70 68 |
-
ХИМИЧЕСКИЕ СВОЙСТВА ДИЭЛЕКТИКОВ
Химические свойства. Знание химических свойств диэлектриков важно для оценки надежности их в эксплуатации и для разработки технологии.
При длительной работе диэлектрики должны не разрушаться с выделением побочных продуктов и не вызывать коррозии соприкасающимися с ними металлов; не реагировать с различными веществами (например, газами, водой, кислотами, щелочами, растворами солей и т.п.). Стойкость к действию всех этих веществ у различных диэлектриков весьма разнообразна.
Материалы в производстве деталей могут обрабатываться различными химико-технологическими : склеиваться, растворяться в растворителях с образование лаков и т.д. Растворимость твердых материалов может быть оценена количеством материала, преходящим в раствор за единицу времени с единицы поверхности материала, соприкасающейся с растворителем. Кроме того, нередко оценивают растворимость по тому наибольшему количеству вещества, которое может быть растворено в данном растворе (т.е. по концентрации насыщенного раствора). Легче всего растворяются вещества близкие к растворителю по химической природе и содержащие в молекулах похожие группировки атомов; дипольные вещества легче растворяются в дипольных жидкостях, нейтральные в нейтральных. Так, неполярные или слабополярные углеводороды (парафин, каучук) легко растворяются в жидких углеводородах, например, в бензине; полярные смолы, содержащие, гидроксильные группировки (фенолформальдегидные и другие смолы), растворяются в спирте и иных полярных растворителях. Растворимость уменьшается с повышением степени полимеризации, высокомолекулярные вещества с линейной структурой молекул растворяются сравнительно легко, а с пространственной структурой - весьма трудно. При повышении температуры растворимость обычно увеличивается.
16
















