f_chim (739345)
Текст из файла
План
-
Газоподобное состояние.
-
Капиллярные методы определения вязкости.
-
Первое начало термодинамики. Изохорический процесс. Изобарический процесс. Теплоемкость.
-
Классицикация поверхностных явлений.
-
Методы получения грубодисперсных и мелкодисперсных систем.
-
Какие дисперсные системы используются и получаются в полиграфическом производстве.
-
Почему в офсетном печатном процессе пробельные элементы могут замасливаться, а печатные элементы принимают краску?
Литература
Тепловое движение молекул и внутреннее давление являются причиной свойства текучих тел — внутреннего трения (вязкости). Это свойство можно определить как сопротивление текучего тела (жидкости, газа и т.п.) перемещению его частей относительно друг друга.
В жидкостях вязкость обусловлена преимущественно внутренним давлением, а в газах — тепловое движение молекул. Этим объясняется характер зависимости вязкости от температыры: у жидкости с повышением температуры вязкость уменьшается, т.к. при этом уменьшается внутреннее давление, а у газов — возрастает, поскольку при этом усиливается интенсивность перемещения молекул газа из слоя в слой.
Для измерения вязкости пользуются приборами, называемыми вискозиметрами. Широко распространены капиллярные вискозиметры, в которых вязкость определяется по времени вытекания определенного объема жидкости через капилляр. Один из капиллярных вискозиметров показан на рис. 1.1. При работе с вискозиметром этого типа определяют время вытекания жидкости, заключенной в объеме между метками 1 и 2.
Термодинамика занимается изучение форм энергии, вне зависимости от положения исследуемого тела в пространстве. Этот вид энергии участвует во всех термодинамических процессах, т.е. во взаимопревращениях теплоты и работы. Впервые эта форма энергии была описана немецкия физиком Клаузиусом и названа внутренней энергией. Она обозначается буквами: U - для термодинамической системы в целом; u - для 1 кг массы гомогенной системы и Um - для 1 моль вещества однородной системы. Внутрення энергия тела (термодинамической системы) представляет собой сумму энергий движения и взаимодействия всевозможных частиц, из которых она состоит: молекул, ионов, атомов, электронов, протонов, нейронов и т.п.
U=Eк + Eп + Eм + Eя
где Ек и Еп - кинетическая и потенциальная энергии частиц тела; Ем - энергия взаимодействия внутримолекулярных частиц тела; Ея - энергия взаимодействия внутриядерных частиц тела.
Кинетическая энергия частиц — это энергия их теплового движения (тепловая энергия).
Потенциальная энергия частиц тела характерезует их взаимное притяжение (внутреннее давление).
Энергия взаимодействия внутримолекулярных частиц тела характерезует состав и строение его молекул и изменяется лишь в результате химических превращений вещества (химическая энергия).
Энергия взаимодействия внутриядерных частиц тела характерезует состав и строение ядер его атомов и изменяется лишь при ядерных превращениях вещества.
Свойства внутренней энергии обобщаются в первом законе термодинамики, известном как закон сохренения энергии: энергия может превращаться из одной формы в другую, но не может возникать или исчезать: полноя эенргия изолированной системы постоянна.
В приложении к термодинамическим системам, т.е. к системам, обменивающимся с окружающей средой энергией в формах теплоты и механической работы, удобнее следующие варианты формулировок:
-
Изменение внутренней энергии системы равно теплоте, поступающей в систему, за вычетом работы, совершенной системой над окружающей средой:
U = Q - W,
-
Теплота, поступившая в систему, расходуется на привращение ее внутренней энергии и совершение работы над окружающей средой:
Q = U + W
Q - сообщаемая системе теплота;
W - работа, совершаемая системой над окружающей средой.
Теплота, работа и внутренняя энергия "участвуют" в термодинамческих процессах, т.е. являются термодинамическими функциями. Проявляются эти свойства в конкретных термодинамических процессах: изохорическом, изохарическом, изотермическом и адиабатическом.
Изохорический процесс. Если система отделена от окружающей среды жесткой оболочкой (механическая изоляция), то при изменении всех прочих параметров состояния (Р, Т и др.) объем ее остается постоянным (V-const).
Изобарический процесс. Если термодинамическую систему ограничить невисомой подвижной оболочкой, то при изменении всех прочих параметров состояния (V, T и др.) давление будет равно давлению окружающей среды и остается постоянным, если давление в среде не изменяется (Р-const).
Из свойст внутренней энергии следует, что ее изменения в термодинамическом процессе можно определить с помощью уравнения первого закона термодинамики. Для этого необходимо уметь определять значение работы W и теплоты Q изучаемого процесса.
Работу находять, исходя из изменений, происходящих в окружающей среде в результате рассматриваемого процесса.
W = Fl
где F - сила, действующая на окружающую среду со стороны изучаемой системы; l - длина пути перемещения границ изучаемой системы.
Замечено, что при нагревании тела становятся теплее. Для выражения степени нагретости тел было введено понятие температуры, изменение которой при нагревании предолагалось пропорциональным значению теплоты, поступающей в исследуемые тела
Q = C T
где Q - значение полученной исследуемым телом теплоты (тплота процесса); C- коэффициент пропорциональности; T - изменение (повышение) температуры исследуемого тела.
Коэффициент пропорциональности С в данном уравнении был назван теплоемкостью. Теплоемкость характеризует термодинамический процесс, протекающий в неизолированной системе и сопровождающийся изменением температуры системы в результате теплообмена ее с окружающей средой — теплоемкость термодинамической системы равна теплоте процесса, в результате которого температура системы изменяется на 1 градус: C = Q / T [Дж/К].
5
К поверхностным явлениям относятся те эффекты и особенности поведениявещества, которые наблюдаются на поверхностях раздела фаз. Причиной поверхностных явлений служит особое состояние молекул в слоях жидкостей и твердых тел, непосредственно прилегающих к поверхностям раздела. Эти слои резко отличаются по многим физико-химическим характеристикам (удельной энергии, плотности, вязкости, электрической проводимости) от свойст фаз в глубине их объема.
Поверхностное натяжение и межмолекулярные взаимодействия внутри фаз обуславливают процессы смачивания и растекания капли жидкости на твердой или жидкой поверхности, а также явления когезии и адгезии.
Смачивание. Малая капля жидкости, помещенная на твердую поверхность, может принять разную форму: либо близкую к сферической, либо плоскую. В первом случае твердая поверхность не смачивается жидкостью, во втором — смачивается.
По числу фаз, участвующих в процессе, различают два типа смачивания: 1) иммерсионное смачивание, имеющее место при полном погружении твердого тела в жидкость; в таком случае в смачивании участвуют две фазы: жидкость и твердое тело; 2) контактное смачивание, протекает с участвием трех фаз: твердой, жидкой, газообразной.
Рис. 1
К
Растекание. При нанесении на поверхность воды капли нерастворимой в ней жидкости в одних случаях происходит растекание капли, в других оно отсутствует. Явление растекания обусловливается поверхностным натяжение на трех поверхностях раздела: вода-воздух ( вг), вода-капля ( вм) и капля-воздух ( мг).
Рис. 2
В
Когезия и адгезия. Явления смачивания и растекания тесно связаны с действие сил когезии и адгезии.
Когезией называется сцепление однородных молекул, атомов или ионов, которое включает все виды межмолекулярного и межатомного притяжения, внутри одной фазы.
Когезия определяет существование веществ в конденсированом (твердом и жидком) состоянии.
Адгезия (прилипание) — это молекулярное притяжение между поверхностями двух соприкасающихся разнородных твердых или жидких фаз. Адгезия является причиной склеивания двух разных веществ за счет действия физических или химических межмолекулярных сил.
Количественно когезию и адгезию характерезуют величиной работы когезии Wс и работы адгезии Wа.
Работа когезии равна энергии, которую нужно затратить на разрыв сил сцепления между молекулами данной фазы. Численно работа когезии (Дж/м²) равна удвоенному значению поверхностного натяжения:
Wс = 2,
где - поверхностное натяжение разрываемого вещества на границе с воздухом.
Работа адгезии — это работа, затрачиваемая на отрыв молекул одной фазы от молекул другой фазы.
Адгезия сопровождается уменьшением поверхностной энергии (при совмещении разных фаз энергия Гиббса системы уменьшается на величину работы адгезии):
Wc = - G.
Для общего описания дисперсных систем обычно используют понятие дисперсность, характерезующее степень измельченности дисперсной фазы. Дисперсность выражается через средний диаметр частиц дисперсной фазы или удельную поверхность раздела фаз. По дисперсности системы подразделяются на грубодисперсные — сосредним диаметром частиц от 100 до 10 000 нм, и коллоидно-дисперсные — со средним диаметром частиц от 1 до 100 нм; коллоидно-дисперсные системы часто называют коллоидными растворами.
Частицы дисперсной фазы грубодисперсных систем различимы в обычный микроскоп, задерживаются бумажным фильтром, а сама система расслаивается при стоянии. Таковы порошки, взвеси, суспензии, эмульсии, пены, аэрозоли и т.п.
Частицы дисперсной фазы коллоидно-дисперсных систем проходят через бумажный фильтр, невидимы в обычный микроскоп, сама дисперсная система не проявляет видимых изменений при стоянии.
Согласно принципам термодинамики, дисперсные системы не могут быть получены самопроизвольно. Для этого необходимо совершить определенные действия, связанные с затратой энергии.
Размеры дисперсных частиц таковы, что их можно получить либо дроблением тел, либо объединением мелких (атомы, молекулы, ионы) в агрегаты коллоидной степени дисперсности. Первый метод называется диспергационным, второй — конденсационным.
Рис. 3
Д
Для получения грубодисперсных систем служат шаровые мельницы (см. рис. 3), представляющие собой полые, вращающиеся цилиндры, содержащие некотрое количество стальных или керамических шаров. При вращении цилиндра эти шары перекатываются, дробя и истирая измельчаемый материал. В шаровых мельницах получают порошки, цемент, густотертые краски и т.п.; размер частиц дисперсной фазы в них можно довести лишь до 1000 нм. Для более тонкого измельчения — до 100 нм и меньше — используют коллоидные мельницы, в которых измельчаемый материал (грубая суспензия), проходя через зазор между вращающимся ротором и корпусом мельницы, подвергается дальнейшему измельчению. В коллоидных мельницах получают акварельные краски, пудру, лекарственные препараты и т.п.
Из диспергационных методов особо следует выделить метод, использующий ультразвук, с помощью которого получают дисперсные системы, отличающиеся высокой однородностью размеров дисперсных частиц и высокой степенью измельчения.
Конденсационные методы получения дисперсных систем основаны на создании условий, при которых будущая дисперсионная среда пересыщается веществом будущей дисперсной фазы. В зависимости от способов создания этих условий конденсационный метод подразделяют на физический и химический.
К физическим методам относятся:
конденсация пара в газовой фазе, в результате чего образуются аэорозоли — дым, туман и т.п.;
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.