Chemic1 (739259), страница 2

Файл №739259 Chemic1 (Влияние физических и химических факторов на основность алкиламинов) 2 страницаChemic1 (739259) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Данные по изменению свободной энергии и энтальпии реакций, описываемых уравнениями (17) — (2), совместно с некоторыми другими результатами позволили определить термодинамические характеристики процессов переноса свободных и протонированпых оснований из газовой фазы в водные растворы и на этой основе про вести термодинамический анализ влияния сольватации на основ­ность аминов в воде [3, 6, 47, 140, 151, 153]. При этом преимущественное внимание было уделено причинам, обусловливающим наб­людаемый порядок изменения основностии в воде при переходе от аммиака к первичным, вторичным и третичным алкиламинам с насыщенными углеводородными заместителями. На основе этих дан­ных Ариетт с сотрудниками [3, 6, 47] сделал вывод, что главным фактором, определяющим наблюдаемый порядок основности ами­нов различных классов в воде, является специфическая сольвата­ция соответствующих катионов, зависящая от числа атомов водоро­да у протонированного азота. Неспецифическая же сольватация, по их мнению, имеет второстепенное значение, т. е. эти исследователи придерживаются сольватационной (гидратационной) теории Тротмана — Диккенсона (см. выше).

В то же время другая группа исследователей [140, 153] считает, что изменение основности аминов при переходе из газовой фазы в воду обусловлено прежде всего электростатической (неспецифиче­ской) сольватацией катионов, а специфическое взаимодействие иг­рает второстепенную роль. При этом в указанных работах прини­мается, что кислотно-основные свойства соединений в газовой фазе являются истинными (собственными) свойствами, и в противопо­ложность случаю в конденсированной фазе практически не об­суждается зависимость этих свойств от строения аминов.

Следует отметить, что, несмотря на большой интерес, проявля­емый к результатам по основности аминосоединеиий в газовой фазе, пока еще нет общего подхода к объяснению эффектов их структуры на данное свойство. Выявлены только некоторые закономерности, характеризующие поведение отдельных групп родственных аминов. Например, Тафт рассмотрел изменение основности при перехо­де от аммиака к первичным, вторичным и третичным аминам и нашел, что введение одной, двух или трех алкильных групп (СН3; С2Н5; n-С3Н7; Н2С=СН—СН2; НСЕС—СН2) сопровождается ростом вели­чин GB в соотношении 1,00 : 1,72 : 2,22. Повышающее основность действие метильных групп при последовательном накоплении их в -положении может быть представлено пропорциональностью 1,00: :1,85 : 2,60 [7]. Введение метильной группы в -положение уве­личивает основность амина примерно на 2,1 ккал/моль, в -и -положения — на 0,9 и 0,5 ккал/моль соответственно [155].

При сопоставлении ароматических и алифатических аминов с одинаковым числом углеродных атомов у атома азота было найде­но, что изменение гибридизации -атомов углерода (например, пе­реход от пиридина к N-метилпирролидину, от анилина к циклогексиламину) практически одинаково влияет на изменение основности в воде и газовой фазе [7]. Была также обнаружена приблизительно прямолинейная зависимость между изменениями основности аминосоединений, имеющих одинаковое число углеродных атомов у азота, но разный характер гетероатома, и степенью этой гибридизации [159], а также между основностью алкиламипов и сте­пенью гибридизации -углеродного атома в алкильном радикале [7]. В тех случаях, когда варьирование заместителя происходит не у реакционного центра, были выявлены более строгие закономер­ности влияния структуры на основность аминов. Так, найдена кор­реляция между GB для -замещенных триметиламинов и I этих заместителей [7]. Величины GB для 3-й 4-замещенных пиридинов хорошо коррелируют [7, 162, 163] с их основностью в воде и с по­стоянными I (°) и R+ (G+) характеризующими электронные эффекты заместителей [7, 158, 163]. Аналогичные зависимости (но менее стро­гие) можно получить и при подобных сопоставлениях основности замещенных анилинов в газовой фазе [3, 7].

Н епосредственное сравнение величин GB (см. табл. 1) со значениями * заместителей*, присоединенных к атому азота, пока­зывает что, на первый взгляд, здесь отсутствует какая-ли­бо зависимость. Тем не менее имеется некоторая тенденция к умень­шению основности рассматриваемых соединений с ростом электро-отрицателыюсти заместителей в них. Это позволило через 40 (из 47) точек для различных аминосоединений (алкиламины, ариламины, производные гидразина и амиды), основности которых в газовой фа­зе были известны к концу 1974 г., провести прямую, описываемую [158] уравнением**

GB = (2,1±0,1) — (6,46±0,16)*, (s = 2,1; r = 0,988). (3)

Если аналогичную прямую (пунктирная линия на рис. 4) провести через каждую 71 точку, представленную на указанном рисунке, то ее уравнение имеет вид

GB = (23,9 ± 0,7) — (8,94 ± 0,48) *,

(s = 4,73; r =0,914). (4)

Следует отметить, что в этом случае при сравнительно узких дове­рительных интервалах в параметрах уравнения (20) на рис. 4 наблюдаются довольно значительные отклонения от указанной прямой/

Например, точка для аммиака (№ 1) отклоняется вниз, а для тетра-метилендиамина (№ 18) — вверх почти на 11 ккал/моль. Более того, и так невысокий (0,914) коэффициент корреляции значительно умень­шается (до 0,798) при исключении из рассмотрения далеко от­стоящей точки для №3 (№ 83). Поэтому найденную зависимость (уравнение (4)), вероятно, можно рассматривать как качествен­ное соотношение, отражающее указанную выше тенденцию к умень­шению GB с ростом электроноакцепторности заместителей в аминосоединеииях.

Интересные результаты получаются при рассмотрении величин GB для алкиламинов с насыщенными углеводородными радика­лами. Как видно из рис. 4, соответствующие точки (полностью за­черненные символы) группируются таким образом, что для первич­ных, вторичных и третичных аминов можно провести отдельные прямые [164] с наклонами, соответственно равными: —22,8 ± 2,2; —23,9 ± 2,7 и —23,5 ± 2,2.

Наличие отдельных прямых для алкиламинов различных клас­сов не является неожиданностью. Так, при подобной обработке (со­поставление с *) потенциалов ионизации — одной из важнейших составляющих сродства к протону в газовой фазе [47, 151, 153]) — было найдено [165], что по аналогии с корреляцией потенциалов ио­низации различных органических соединений RxМНy (где М =С, О и S) эти данные лучше всего представлять в виде отдельных зависи­мостей для первичных, вторичных и третичных аминов, хотя имеется и другой подход, в соответствии с которым зависимость потен­циалов ионизации аминов от их структуры описывается единым урав­нением [166]. Однако первый подход более предпочтителен, посколь­ку он охватывает больший набор аминов, а также рассматривает с единых позиций потенциалы ионизации самых различных соеди­нений*. Кроме того, при сопоставлении величин РА с потенциала­ми ионизации [153, 155] и энергиями связывания остовных (1s) элек­тронов [167] наблюдается также отдельные прямые для разных классов аминов. Следует отметить, что при сравнении термодинамиче­ских характеристик процессов протонирования аминов в газовой и конденсированной фазах, общей и электростатической теплот гид­ратации алкиламмоний-ионов как с величинами РА, так и с радиуса­ми этих ионов были получены отдельные прямые для первичных, вторичных и третичных аминов [3, 140, 153]. При этом амины с электроотрицательными заместителями в тех случаях, когда соот­ветствующие данные рассматривались, заметно отклонялись от най­денных зависимостей [140]. Из рис. 1 отчетливо видно, что точки (незачерненные символы) для аминов, содержащих электроотрица­тельные заместители, отклоняются (иногда существенно) от получен­ных прямых, т.е. здесь наблюдается то же явление, что и при со­поставлении величин Н протонирования аминов в воде и газовой фазе.

Отклонения, наблюдаемые для диаминов (табл. 1, № 16—21), обусловлены внутримолекулярной сольватацией типа III [156,157]. Влияние этой сольватации, которое можно количественно оценить по отклонению соответствующих точек от прямой I на рис. 4, силь­нее всего проявляется при n = 4, что можно связать с устойчи­востью соответствующих структур.

Внутримолекулярная сольватация того же типа, вероятнее всего, ответственна и за отклонения вверх то­чек для -метоксиэтиламина (№ 22), пиперазина (№ 46), морфолина (№ 47) и N,N-тетраметилэтилендиамина (№ 68) от соответствую­щих прямых. В случае диазобициклооктана (№ 69) существенное отклонение (~ 13 ккал/моль) точки о! прямой для третичных аминов, вероятно, обусловлено стабилизацией его катиона за счет взаимодействия непо­деленной электронной пары непротонированного атома азота с орбиталым атомом азота, к которому присоединен протон.

О
тклонения точек для аминов, содержащих электроотрицатель­ные заместители, также, по-видимому, следует связывать с увеличением GB этих аминов за счет стабилизации их катионов при образовании внутримолекулярных водородных связей, например типа IV для фторсодержащих алкиламинов.

Труднее объяснить наблюдаемые отклонения от соответствую­щих прямых точек для циклогексиламина (№1 4), гидразина (№ 15), манксина (№ 66) и N,N-диметилгидразина (№ 67). Здесь, по-види­мому, проявляется как некоторое расхождение в величинах GB, полученных разными авторами (например, в случае манксина при­веденное в табл. 1 значение GB было рассчитано при сопоставле­нии данных по РА этого амина и GB других аминов), так и влияние (в гидразинах) неподеленной электронной пары на α-гетероатоме (α-эффект ).

При рассмотрении основности ароматических аминов в газовой фазе (табл. 1, № 31, 52, 53,74—78), прежде всего обращает внима­ние тот факт, что их величины GB значительно выше, чем для ам­миака, и практически совпадают с таковыми для алифатических аминов с насыщенными углеводородными ­ заместителями. ­ Такое аномальное поведение анилина и его производных объясняется повышенным влиянием поляризуемости фенильного кольца в газовой фазе, которое превышает действие резонансного эффекта. Указанное влияние поляризуемости α-непредельных связей проявляется и в случае дифенил- и трифениламинов. Так, трифениламин, основность которого в воде не поддаётся измерению в газовой фазе,оказался сильнее, чем даже метиламин. Повышена основность и дифенилами­ на, который по своему сродству к протону в газовой фазе находится между метиламином и анилином. Используя отданные, можно попытаться количественно оценить различие во влиянии поляри­зуемости и резонанса фенильной группы на основность ариламинов. Для анилина, где соответствующая величина расчитывалась как от­клонение его точки от корреляционной прямой для первичных алкнламинов, она оказалась равной примерно 10 ккал/моль. В слу­чае дифениламина (отклонение от прямой для вторнчных алкиламинов) при использовании среднего значения GB между анилином и метиламином (~ 8 ккал/моль) получается, что действие каждой фенильной группы равно ~ 10 ккал/моль. А для трифениламина (GB = ~ 11 ккал/моль как среднее значение между метил­амином и М-метиланилином данная величина, определенная по отклонению от прямой для третичных алкиламинов, оказа­ лась равной ~ 11 ккал/моль. Таким образом, можно считать, что; различие в действии эффектов поляризуемости и резонанса
каждой α-кратной связи практически не зависит от числа таких связей.
Влияние только резонансного эффекта количественно оценивается при сравнении основности в газовой фазе бензохинуклиди-1 на (№ 79) и N,N-диалкиланилинов (№ 74—78). Сопоставление значений GB для этих аминов приводит к величине ~ 5 ккал/моль, Принимая во внимание отмеченное выше различие во влиянии поля­ризационного и резонансного эффектов фенильных групп, можно считать, что эффект поляризуемости α-непасыщеной связи на газо­фазную основность аминов равен ~ 15 ккал/моль.

Вероятно, вследствие проявления эффектов поляризуемости пир­рол (№ 54 в газовой фазе из-за повышаю­щего основность влияния двух α-кратных связей оказался основнее аммиака на 4 ккал/моль.

Влияние поляризуемости, по-видимому, является ответственным за значительное повышение основности газовой фазе пиридина (№ 80) амидов* (№ 32, 33, 55, 81, 82) по сравнению с аммиаком и алкил- аминами.

Рассмотренные данные показывают, что влияние поляризуемо­сти непредельных группировок на основность аминов в газовой фазе оказывается весьма эффективным (оно значительно превышает ре­зонансные влияния). В то же время поляризуемость насыщенных ра­дикалов, которая должна увеличивать основность соединения с рос­том числа заместителей у реакционного центра в данном случае практически не проявляется, поскольку третичные алкиламины являются более слабыми основаниями, чем вторичные и пер­вичные при равных величинах Σσ*(ср. расположение прямых I - III на рис. 1).

Интересно сопоставить основность в газовой фазе трехфтористого азота (см. № 83 в табл.1) и аммиака (№ 1). Пониженная основ­ность NF3 в первом приближении может быть объяснена акцептор­ным действием трех атомов фтора у азота. Однако при количествен­ном рассмотрении получается, что с учетом величины Σσ* атомов фтора значение ΔGB для этого соединения должно быть равным примерно — 190 ккал/ моль. Повышение наблюдаемой величины над расчётной (пример­но на 130 ккал/моль) трудно объяснить на основе любых известных эффектов атомов фтора. Однако возможно, что здесь протоиирование осуществляется не по атому азота, а по атом у фтора. В пользу этого может свидетельствовать тот факт, что величины РА для НF, СН3F и С2Н5F равны 137, 151, 163 ккал/моль соответственно, т. е. прак­тически совпадают со значением для NF3 (151 ± 10 ккал/моль ).

Следует отметить, что влияние алкильных заместителей у атома азота в анилине оказывается аналогичным таковому для алифати­ческих аминов, т. е. основность их увеличивается с ростом чис­ла и размера радикалов (ср. № 31, 52, 53, 74—78), и это влия­ние удовлетворительно описывается уравнением типа (1). Из рис. 1 видно, что точки (частично зачерненные символы) для N-алкил- и N,N-Диалкиланилинов ложатся на отдельные прямые практически с тем же наклоном, что и для алифатических аминов.

В связи с тем, что наклоны прямых па рис. 1 для алифатических и ароматических аминов практически совпадают, все рассмотреные данные для 34 аминов были обработаны по единому урав­нению. В соответствии с этими расчетами влияние структуры названных аминов описывается следующими уравнениями

GB = 32,7 ± 0,2 — 23,1 ± 0,З Σσ* (первичные алкиламины), (5а)
GB = 27,6 ± 0,3 — 23,1 ± 0,3 Σσ* (вторичные алкиламины), (56)
GB = 20,3 ± 0,3 — 23,1 ± 0,3 Σσ* (третичные алкиламины), (5в)
GВ = 38 ± 0,5 — 23,1 ± 0,3 Σσ* (N-алкиланилины), (5 г)

GB = 32,6 ± 0,4 — 23,1 ± 0,З Σσ* (N,N-диалкиланилины), (5д)

(s-0,731, R = 0,990).

При этом оказалось, что первичные алифатические и третичные аро­матические амины случайно ложатся практически на одну и ту же ли­нию (прямые I и V на рис. 1). Величина ρ* (~ — 17, если перевести ее в размерность рКа) здесь оказалась значительно выше, чем для воды (3) и других заместителей.

Расположение прямых на рис. 4 свидетельствует о том, что в газовой фазе сродство аминов к протону при равенстве Σσ* их радикалов изменяется в ряду: первичные> вторичные> третичные

ВН · (Н2О)п-1 + Н2О  ВН • (Н20)n (6)

Характеристики

Тип файла
Документ
Размер
220,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6955
Авторов
на СтудИзбе
264
Средний доход
с одного платного файла
Обучение Подробнее