Mal7 (738924), страница 4

Файл №738924 Mal7 (Операции с ценными бумагами) 4 страницаMal7 (738924) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Доходность облигаций до срока погашения оценивают в зависимо­сти от их инвестиционных качеств и текущего рыночного курса. Опре­деление соответствующей доходности основано на применении рассмот­ренных ранее динамических методов, в частности метода NPV - чистой приведенной стоимости (капитализации дохода), в соответствии с ко­торым стоимость любого финансового актива представляется как со­временная (текущая) стоимость будущих платежей, поступающих от его использования. Стоимость, по которой потенциальный инвестор готов приобрести облигацию, может быть определена по формуле,

T T

PV=Nr/(1+i)t+N/(1+i)T=Nr1/(1+i)t+N/(1+i)T

t=1 t=1

где N - номинальная стоимость облигации;

г - ставка купонного процента;

i - ставка дисконтирования, т. е. норма текущей доходности, выбираемая инвес­тором как наилучшая из альтернативных возможностей вложения капитала;

T - срок погашения, т.е. период, в течение которого компания должна возместить владельцу ее номинальную стоимость.

Эта формула называется основной моделью оценки облигаций (Basic Bond Valuation Model). Ее экономический смысл состоит в том, что те­кущая стоимость облигации равна сумме всех процентных выплат за период ее обращения и номинала, приведенных к настоящему моменту времени, т. е. дисконтированных по норме текущей доходности для дан­ного вида облигаций. При этом предполагается, что норма текущей доходности - ожидаемая инвесторами минимально необходимая вели­чина доходности по альтернативным безрисковым инвестициям и премия за риск. Отсюда текущая стоимость облигации - предписывает ей инвестором стоимость, по которой он желал бы ее приобрести. Е< в качестве коэффициента дисконтирования используется рыночная схема доходности, т.е. средняя из ожидаемых значений доходности одними инвесторами (это определяет соотношение спроса и предложения на данную облигацию), то текущую стоимость облигации можно рассматривать в качестве рыночной цены.

Пример. Пусть инвестору необходимо определить текущую стоимость облигации номиналом 1,0 тыс. руб., ставкой купонного дохода 30% сроком обращения 10 лет, которая бы обеспечила ему получение 35% годового дохода (на уровне рыночной нормы доходности).

Подставляя эти величины в формулу текущей стоимости облигации, j получим:

10

PV=1,0*0,31/(1+0,35)t +1,0 / (1+0.35)10 =0,3 • 2,715 + 1,0 • 0,05 = 0,8145 +

t=1

+0,0497 = 0,8642 тыс. руб.

Значения дисконтирующих множителей приведены в финансовых таблицах.

В данном случае текущая цена облигации равна 0,8642 тыс. руб., что меньше ее номинала, и облигация продается с дисконтом, что то же са­мое. Некий совокупный инвестор готов приобрести данную облигацию только по цене ниже номинала.

Допустим, что рыночная норма доходности по данной облигации составляет 25% годовых (при прочих равных условиях). Тогда ее теку­щая рыночная цена

10

PV=1,0*0,31/(1+0,25)t+1,0/ (1+0.25)10=

t=1

= 0,3-3,57 +1,0- 0,01 = 1,071 + 0,1= 1,171 тыс. руб.

В данном случае текущая себестоимость облигации превышает ее номинал, и она может быть приобретена инвестором с премией.

Таким образом, можно отметить, что чем больше ожидаемый уро­вень дохода по облигации с позиции инвестора, т.е. рыночная норма доходности превышает установленную процентную ставку купонного дохода, тем ниже рыночная цена облигации, и наоборот. При равен­стве ожидаемого уровня дохода купонной ставки рыночная цена обли­гации близка к номиналу.

В случае облигации с нулевым купонным доходом, т. е. без выплаты процентов в период обращения, инвестор может определить ее теку­щую стоимость:

PV=N/(1+i)T

где N - номинал облигации, руб.;

Т - период ее обращения, лет;

i - ожидаемая инвестором норма доходности, %.

Текущая стоимость облигации представляет здесь величину номи­нала, которую получит владелец при погашении облигации эмитентом и которая приведена к настоящему (текущему) моменту по ставке дис­контирования, равной ожидаемой норме доходности. При этом ожида­емая инвестором норма доходности определяется на уровне не ниже до­ходности альтернативных вложений. Эта формула представляет упрощенный случай основной модели оценки облигаций.

Пример. Пусть инвестору необходимо определить текущую сто­имость облигации номиналом 1,0 тыс. руб. и сроком обращения пять лет при условии, что ожидаемая норма доходности составит 20% годо­вых. Подставляя значения в формулу текущей стоимости облигации, получим:

PV=1,0/(1+0,2)5=1,0/2,49= 0,402 тыс. руб.

Стоимость, равная 402 тыс. руб., представляет максимальную цену, которую инвестор захочет заплатить, или минимальную цену, по кото­рой он захочет продать, если он ожидает от инвестиций данного типа доходность в размере 20%. Такую облигацию следует купить только при цене существенно ниже номинала (с дисконтом). Допустим, что рыночная цена такой облигации составляет 0,35 тыс. руб. Тогда доход­ность данной облигации при условии, что инвестор приобрел ее по рыночной цене Р, будет определяться:

P=N/(1+i)T => i=0,23(23%)

Расчет показывает, что приобретение такой облигации - выгодное вложение капитала, поскольку норма дохода, обеспечиваемая ею (23%), больше альтернативной (20%).

Зная текущую рыночную стоимость облигации, ее номинал, купон­ную ставку дохода и срок До погашения, можно определить и внутрен­нюю норму доходности, т.е. значение доходности, меньше которого владение облигацией будет убыточно.

Существуют компьютерные программы, позволяющие выполнять подобные расчеты. В общем виде норма доходности (Profitability Index) определяется как показатель, характеризующий соотношение дискон­тированных потоков поступлений и платежей в течение инвестицион­ного периода Т:

T

PI=NCFt / (1+i)t/I

t=1

где PI - ожидаемая доходность инвестиций;

NCFt, - чистый денежный поток в период времени t,

I - величина единовременных вложений средств в приобретение финансовых ак­тивов;

i - ожидаемая инвестором норма доходности (ставка дисконтирования), %.

Задача определения доходности от инвестирования средств в обык­новенные и привилегированные акции является более сложной, чем в облигации, поскольку существует значительная неопределенность в оценке величины будущих поступлений денежных средств по данным видам ценных бумаг.

По сравнению с позицией владельца обыкновенных акций позиция инвестора, обладающего привилегированными акциями, более благо­приятна при выплате дивидендов, а также возврате первоначальной суммы инвестиций в случае ликвидации предприятия. При определе­нии стоимости привилегированных акций единственно точно опреде­ляемым элементом служит ежегодный фиксированный дивиденд.

Величина текущей стоимости привилегированных акций представляет с позиций инвестора величину потока ожидаемых в будущем дивидендов, дисконтированных по приемлемой для инвестора норме доходности, т.е.

PV=Дt /(1+i)t

t=1

где PV - текущая стоимость привилегированной акции, используемой неопределен­ное число лет;

Дt - величина дивидендов, планируемых к получению в t-м году;

i - норма текущей доходности.

В случае неопределенно долгого владения привилегированной ак­цией для определения ее текущей стоимости может использоваться сле­дующая упрощенная формула:

PV=Nr/i

Рассчитанная таким образом величина определит цену, которую инвестор пожелает заплатить за привилегированную акцию, или мини­мальную цену, за которую он согласится продать акцию. Как правило, ни один инвестор не планирует держать у себя бесконечно долгое вре­мя конкретную ценную бумагу, поскольку возникают возможности дня более выгодного использования средств. Если инвестор может надеяться продать акцию по определенной цене в известное время, то норму до­ходности такой акции можно определить:

I = Nr/PV

Инвестирование средств в обыкновенные акции должно обеспечить ожидаемый в будущем поток движения наличности, состоящий из ве­личины предполагаемых в каждом году дивидендов и цены, которую инвесторы надеются получить при продаже акции в конце некоторого периода и которая включает прибыль от первоначального инвестиро­вания и доход с прироста капитала (либо потери капитала). Планируе­мый период владения акциями у различных инвесторов может сильно различаться. Те из них, которые хранят их долго, ожидают будущие дивиденды и возможность продать акции по цене выше той, которую они заплатили. Эта конечная стоимость будет зависеть от желания в этот момент других инвесторов купить предложенные акции. Цена, которую они готовы заплатить, в свою очередь, будет зависеть от ожи­даний дивидендного дохода и конечной стоимости.

Общая величина дохода всей цепи инвесторов, вкладывающих свои средства в акции, представляет сумму распределений со стороны ком­пании наличных средств - будь то наличные дивиденды, ликвидацион­ные дивиденды или выплаты в процессе выкупа акций, т.е. любое рас­пределение денежных средств акционерам, включая выкупы акций. Акционеры ожидают, что, реинвестируя получаемую прибыль, компа­ния увеличивает будущую прибыльность их вложений и предельный размер дивидендов.

Если инвестор предполагает держать акцию один год и цена акции будет расти при ставке g, то текущая стоимость такой акции будет:

PV=Д+PV(1+g)/(1+i)

где Д - ожидаемый в конце года дивиденд;

g - темп роста акции в течение года, %;

i - ставка дисконтирования.

Отсюда

PV(1+i)= Д+PV(1+g);

PV(l+i-l-g)=Д;

Д=PV(i-g),

PV=Д/(i-g)

Данное выражение представляет собой текущую стоимость ожида­емых дивидендов и цену акции в конце года, дисконтированную при соответствующей норме прибыли /. Так, если в прошлом году компа­ния выплатила на акцию 10 руб. дивидендов, причем прибыли компа­нии и соответственно дивиденды росли в среднем на 5 % ежегодно за ряд лет, то инвестор, предполагая, что темп роста сохранится и цена акции также возрастет на 5%, может определить ожидаемую величину дивиденда:

Д1 =Д(1 + g) = 10,0 • 1,05 = 10,5 руб.

Если предположить, что норма прибыли по аналогичным акциям равна 12%, то можно определить ее текущую стоимость:

PV= Д1/(i-g)=10,5/(0,12-0,05)=150руб.

Если фактическая цена акции выше, то инвестор не купит ее, либо, если владеет акцией, продаст ее.

Ожидаемую норму прибыли на данную акцию можно определить из условия

PV=Д1 +P0 (1+g)/(1+i)

где i - ожидаемая норма прибыли. Отсюда

i=Д1/PV+g=10,5/150+5%=7%+5%=12%

Таким образом, если инвестор ожидает получить дивиденд в 10 руб. и цена акции увеличится предположительно на 5%, то ожидаемая общая прибыль составит 12%, из которых 7% - ожидаемый доход от дивиденда и 5% - ожидаемый доход от прироста капитала. Обычно ожидаемая нор­ма прибыли равна требуемой (приемлемой), т.е. коэффициенту дискон­тирования, используемому при расчете текущей рыночной цены акции, при условии, что рынок акций находится в равновесии. Если бы период владения акциями составлял некоторое число лет Т, то текущая стоимость акции, т.е. дисконтированный к настоящему моменту поток будущих поступлений от владения акцией, составлял бы:

T

PV=Дt /(1+i)t+Pt /(1+i)t

t=1

где Дt - ожидаемые дивиденды в конце периода;

РT - ожидаемая стоимость акции в конце периода Т.

Ожидаемый уровень дохода инвестора будет представлять такую норму доходности (ставку дисконтирования), которая уравняет теку­щую стоимость акции, т.е. дисконтированную величину получаемых дивидендов и ожидаемой будущей стоимости акции с ее рыночной сто­имостью Р. Он представляет такое пороговое значение доходности, ниже которого владение акцией было бы убыточным для инвестора (с позиций его ожиданий будущих поступлений по акции):

T

P0= Дt/(1+i*)t +PT/(1+i*)T

t=1

где i* - ожидаемый уровень доходности (норма дисконтирования).

Для решения подобных уравнений существуют компьютерные про­граммы и специальные калькуляторы.

Для индивидуального инвестора владение акциями может быть нео­пределенно долгим, и тогда модель оценки соответствующей акции ана­логична модели бессрочной облигации. В этом случае ожидаемый до­ход, т.е. поток наличности, целиком состоял бы из будущих дивидендов и уровень дохода определялся бы путем решения следующего уравнения относительно:

P0= Дt /(1+i)t

t=1

Характеристики

Тип файла
Документ
Размер
186 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее