157793 (736735), страница 2

Файл №736735 157793 (Нормальный закон распределения) 2 страница157793 (736735) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Поскольку мате­матическое ожидание М{X} есть истинное, объективно существующее неслучайное значение, а границы интервала - случайные величины (за счет наличия в них случайных величин X и S{X}), то правильно будет говорить о том, что доверительный интервал (1.5), (1.6) с ве­роятностью Р = I - q накрывает М {X}.

    1. Критерий Фишера

Критерий Фишера применяется при проверке гипотезы о равенстве дисперсий двух генеральных совокупностей, распределенных по нормальному закону.

F-критерий Фишера называют дисперсионным отношением, так как он формируется как отношение двух сравниваемых несмещенных оценок дисперсий:

причем в числителе ставится большая из двух дисперсий. Расчетное F сравнивают с _____________, которое находят из таблиц, для степеней свободы _____________________________________где N1 - число элементов выборки, по который вычислена _______ .

N2 - число элементов выборки, по которым получена оценка дисперсии ________.

Если F<Fкр , то принимается нулевая гипотеза о равенстве генеральных дисперсий _________________ при принятом уровне значимости q.

На рис. 1.3 показаны кривые распределения _____. Зачернена об­ласть критических значений F .

На практике задача сравнения дисперсий возникает, если требуется сравнить .точность приборов, инструментов или методов измерений. Предпочтительнее тот прибор, инструмент или метод, который обеспечи­вает наименьшее рассеяние результатов измерений, т.е. наименьшую дис­персию.

. .

Кривые F-распределения Фишера

Рис.1.3

Если окажется, что нулевая гипотеза справедлива, т.е. генераль­ные дисперсии одинаковы, то различие несмещенных оценок дисперсий незначимо и объясняется случайными причинами, в частности случайным отбором объектов выборки. Например, если различие несмещенных оценок дисперсий результатов измерений, выполненных двумя приборами, оказа­лось незначимым, то приборы имеют одинаковую точность.

Если нулевая гипотеза будет отвергнута, т.е. генеральные диспер­сии неодинаковы, то различие несмещенных оценок дисперсий значимо и не может быть объяснено случайными причинами, а является следствием того, что сами генеральные дисперсии различны. Например, если разли­чие _________________ результатов измерений, произведенных двумя приборами, оказалась значимым, то точность приборов различна.

    1. Критерий Кохрэна

G -критерий Kохрэна применяется для оценки однородности несмещенных оценок дисперсий, вычисленных по одинаковому чис­лу N наблюдений. При этом генеральные совокупности должны быть распределены нормально. Критерий формируется как отношение максимальной из сравниваемых оценок дисперсий к сумме всех K дисперсий;

Если Gкр=Gq,f1,f2 , то оценки дисперсий признаются однородными или, другими словами, различаются незначимо. В этом слу­чае с уровнем значимости q ммнимается нулевая гипотеза, состоящая в том, что генеральные дисперсии рассматриваемых совокупностей равны между собой: _____________________________________________.Числа степе­ней свободы числителя f1 и знаменателя f2 определяются условиями

Если требуется оценить генеральную дисперсию, то при условии од­нородности оценок дисперсий целесообразно принять в качестве ее оцен­ки среднее арифметическое несмещенных оценок дисперсий

    1. Критерий Пирсона

Н ормальный закон распределения характеризуется плотностью вероят­ности вида

где M{X}, ____ — соответственно математическое ожидание и диспер­сия случайной величины. согласованности изучаемого распределения с нормальным

Для проверки гипотезы о соответствии, экспериментального закона распределения случайной величины нормальному применяют критерий Пир­сона или, как его иначе называют, критерий X2 (хи-квадрат),так как принятие и отклонение гипотезы основаны на X2 -распределении.

Использование критерия Пирсона основано на сравнении эмпиричес­ких (наблюдаемых) ___ и теоретических (вычисленных в предположении нормального распределения) _____ частот. Обычно ____ и _____ различны.

Возможно, что расхождение случайно (незначимо) и объясняется малым числом наблюдений, способом их группировки Или другими причина­ми. Возможно, что расхождение частот неслучайно (значимо) и объясня­ется тем, что теоретические частоты вычислены, исходя из неверной ги­потезы о нормальном распределении генеральной совокупности.

Критерий Пирсона отвечает на поставленный ранее вопрос. Однако, как и любой статистический критерий, он не доказывает справедливость гипотезы, а лишь устанавливает при принятом уровне значимости q ее согласие или несогласие с данными наблюдений.

Пусть по выборке объема ___ получено эмпирическое распределение.

Допустим, в предположении нормального распределения генеральной совокупности, вычислены теоретические частоты _____. При уровне значимости q требуется проверить нулевую гипотезу: генеральная совокупность распределена нормально.

В качестве критерия проверки нулевой гипотезы принимается слу­чайная величина •

или

где К- число интервалов (вариант).

Эта величина случайная, так как в различая опытах она принимает различные, заранее неизвестные значения. Чем меньше различаются эмпирические и теоретические частоты, тем меньше значение критерия (1.9) и, следовательно, он в известной мере характеризует близость эмпири­ческого и теоретического распределений. Возведением в квадрат разнос­тей частот устраняется возможность взаимного погашения положительных и отрицательных разностей.

При неограниченном возрастании объема выборки ( _________ ) закон распределения случайной величины (1.9), независимо от того, какому за­кону распределения подчинена генеральная совокупность, стремится к за­кону распределения X2 с f степенями свободы. Поэтому случайная ве­личина (1.9) обозначена X2, а сам критерий называют критерием сог­ласия "хи квадрат".

Число степеней свободы находят по равенству f=K-1-l где l- число параметров предполагаемого распределения, которые оце­нены по данным выборки, а l вызвана тем, что имеется дополнитель­ное ограничение:

т.е.- Теоретическое число элементов совокупности должно быть равно фак­тическому числу элементов.

Поскольку в данном случае, предполагаемое распределение является нормальным, nо оценивают два параметра (математическое ожидание и среднеквадратическое отклонение), поэтому l=2 , и число степеней свободы

Если расчетное (наблюдаемое) значение критерия (1.9).оказалось меньше критического _____ которое находят по таблицам, для соответствующего уровня значимости q и числа степеней свободы , т.е. если

то нет оснований отвергнуть нулевую гипотезу о нормальности распреде­ления. В противном случае (при ___________ ) нулевая гипотеза отверга­ется.

При проверке гипотезы о нормальности распределения существует правило, согласно которому общее количество элементов выборки должно быть

а число элементов, попавших в любой i-и интервал (т.е. значения эмпи­рических частот ____),должно быть ___________________________

Если в крайние интервалы попадает меньшее число элементов, то они объединяются с соседними интервалами. Внутренние интервалы объеди­нять запрещается. Общее число интервалов К , оставшихся после объеди­нения, должно удовлетворять условию _____________ (1.15)

Иначе число степеней, свободы f (1.11) окажется равным нулю, и гипо­тезу невозможно будет проверить.

В целях контроля вычислений формулу (1.9) целесообразно преобра­зовать к виду

В табл.1.4 приведен пример расчета наблюдаемого значения крите­рия ____ по известным эмпирическим и теоретическим частотам.

Если ­­­­_________ , то нет оснований отвергнуть нулевую гипоте­зу. Т.е., расхождение эмпирических и теоретических частот незначимо. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.

  1. ХАРАКТЕРИСТИКА ПАКЕТА EXCELL

Microsoft Office является единственным пакетом, установленным на большинстве компьютеров. Excel — это организатор любого типа данных, будь они числовыми, текстовыми или какими-нибудь еще. Поскольку в этой программе есть много встроенных вычислительных возможностей, большинство людей обращаются к Excel, когда нужно создать таблицы для финансовых расчетов, работать со статистическими данными. С помощью программы можно сделать свои отчеты (например, созданные в Word) более профессиональными и "пробить" дополнительное финансирование с помощью потрясающих деловых презентаций (вроде тех, что создаются в Microsoft PowerPoint). Excel позволяет создавать диаграммы или таблицы для различных финансовых расчетов, хра­нить какие-либо списки или даже сводить данные из различных таблиц.

Excel — это великий хранитель списков (хотя их принято называть в Excel базами данных) и создатель таблиц. Поэтому Excel как нельзя лучше подходит для отслеживания информации о продаваемых товарах, об обслуживаемых клиентах, о служащих, которых вы контролируете, и т.д.

Каждая единица информации (например, имя, адрес, число продаж в ме­сяц и др. информация) занимает свою собственную ячей­ку (клетку) в создаваемой рабочей таблице. В каждой рабочей таблице 256 столбцов (из которых в новой рабочей таблице на экране видны, как правило, только первые 10 или 11 (от А до J или К) и 65 536 строк (из которых обычно видны только первые 15-20). Если умножить 256 на 65 536, то получится, что в каждой рабочей таблице 16 777 216 пустых клеток. Каждая новая рабочая книга содержит три чистых листа рабочих таблиц.

Вся помещаемая в электронную таблицу информация хранится в от­дельных клетках рабочей таблицы. Но ввести информацию можно только в текущую клетку. С помощью адреса в строке формул и табличного курсора Excel ука­зывает, какая из 16 миллионов клеток рабочей таблицы является те­кущей. В основе системы адресации клеток рабочей таблицы — так называемой системы А1 — лежит комбинация буквы (или букв) столбца и номера строки.

Excel являет­ся таким замечательным инструментом для выполнения расчетов по формулам, а также для хранения информации в виде списков и таблиц. Это дает возможность намного упростить работу со статистическими данными, которые рассчитываются по сложным формулам. В программе заложены множество групп формул, в том числе и статистических, или пользователь может сам записать формулу.

  1. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ




Характеристики

Тип файла
Документ
Размер
3,11 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6784
Авторов
на СтудИзбе
280
Средний доход
с одного платного файла
Обучение Подробнее