72733-1 (736120), страница 3

Файл №736120 72733-1 (Пространство и время вращения. Пятимерный физический мир) 3 страница72733-1 (736120) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Важно, что все размерные величины можно только складывать и умножать. Все остальные числовые функции (в физике) выполнимы только для безразмерных величин. О чем это говорит?)

И в этом деле подножки часто подставляет естественный язык. Кроме того, он же подставляет еще и другие подножки. А именно – его (традиционную) недостаточную обозначительную точность. Математика, как может, справляется с этим.

Так, в виде собственных идентификаторов разрешается проблема недостаточной точности указательных местоимений. В виде нецелых чисел

(обращаю внимание – традиционно имя числительное в естественном языке связано только с целыми числами, в лучшем случае с обыкновенными дробями)

разрешается (игнорируемая или возможно сознательно культивируемая в естественном языке) проблема недостаточной обозначительной силы (по простонародному - точности) прилагательных и наречий. Собственно говоря, всякое прилагательное и наречие (по крайней мере имеющие антонимы и некие промежуточные значения.)…

(Как-то: живой-косный. Или мертвый? А что сказать про растения? Вспоминаю, я уже давно говорил, что существует множество уровней жизненности. Как и существует множество уровней живости. Разумеется, в рамках вышеназванных уровней (форм) жизненности.)

есть основа некоторой нецелой величины, подобной физической.

Почему-то физика справилась с проблемой перехода от неизмеряемого к измеряемому. А другие науки пока топчутся на этом месте. По-видимому, решение этой проблемы связано не столько с выбором эталона (единицы измерения) данной величины, сколько с анализом (и стандартизацией!) концепта данного свойства. (именно стандартизация концепта свойства и выстроит в единый (линейный) ряд разные экземпляры этого свойства)

Например, свойств красоты и умности.

Измерение (а не счет) – это всегда переход от целого к нецелому. Стоп, неточно! Не счет, а логическая (верификационная) оценка “да-нет”. Не целое, а логическое (значение).

Итак, торный путь науки – от логической верификации к измерению и вычислению. Проблема эта возникает оттого, что логическая верификация буквально вмонтирована в естественный язык, да так, что оказывает на рассуждение давление даже тогда, когда оно пытается вырваться из его пут (в лице науки). Эта же тенденция толкает науку на путь подсчета штуками (и вычисления долей в процентах), то есть на путь превращения науки в куроводство (почетно называемое статистикой). Потому что целое (а особенно натуральное) количество видимо (а точнее кажимо!) ближе к логическому.

Почему экономике (1-ой среди обществоведческих наук) удалось прорваться к математике? Потому что человек (руками общества или в виде общества)

(видимо, вынужденно. Почему вынужденность проявилась именно здесь – это вопрос.)

создал нецелую меру стоимости (дорогой - дешевый). Вот за это наука и зацепилась. Но вспомним, разве таким же естественным (сторонним от науки) путем создавались другие меры? Например, измерение длины (длинный-короткий), массы (тяжелый-легкий), температуры (горячий – холодный), работы (трудный-легкий),

(Неправда ли, здесь есть явная связь работы с весом? Запечатленная в языке. Через двухзначность слова “легкий”. Да и “тяжелый” тоже. Тяжелый – это не только собственно тяжелый, но и трудный. Но так, наверно, только в русском языке.)

а также так называемого качества (хороший – плохой) – этой основы основ всякой экономики (после стоимости).

(Которое на самом деле есть функциональность, или утилитарность, или удобство (данной вещи-предмета (а услуги?), во всей ее системности, для данной функции). Которую К.Маркс обозначает как потребительную (в отличие от меновой, денежной) стоимость.

Таким образом, оказывается, что качество есть величина относительная, то есть не унарная. По крайней мере эта величина зависит не только от самой вещи, но и от функции, которую посредством нее, вещи, должно выполнить. (поэтому качество бинарно, и поэтому аналогично отношениям любить, уважать, командовать и так далее.)

Стоп, а не перепутал ли я удобство-утилитарность с полезностью вещи (услуги)? Если так, то нужно вводить еще и 3-й аргумент отношения – кому (с чьей точки зрения) полезно (или бесполезно). Тогда как удобство (нами могло быть рассмотрено) безотносительно точки зрения. (Вот оно и начало статистики! Начало “берут-не берут” (годится -не годится. Подчеркиваю: именно так, потому что от этого до “покупают-не покупают” есть некое, неравное нулю, расстояние.))

Как происходит измерение? То есть взаимодействие измерит. прибора с носителем свойства? Результат измерения - это указание прибора на некую точку шкалы.

Кстати, шкала необязательно должна быть линейной. Она должна быть такой, как реагирует прибор на данное свойство.

Таким образом, измерение - это функция между свойством и (первоначально) некоторой длиной или углом. (регулировка - это обратная функция. хотя в общем случае не обязательно должна фигурировать длина или угол) Следовательно, измерение (и регулировка) есть реализуемое соответствие между разнокачественными свойствами. Которое, повторюсь, не обязательно линейно и зависит это от прибора-реализатора (измерения). Или от процедуры измерения. (как, например, измерения силы игры в шахматы)

Смотрите, ведь спорт - это и есть измерение. Стоп, не всегда так. Но по кр. мере спорт - это сравнение.

Так как измерение - это преобразование одного свойства в другое (преимущественно в угол отклонения стрелки или напряжение), то развитие этого дела основано на открытии межпредметных эффектов. То, что такие эффекты существуют не только внутри физики, но и между химией и физикой, доказывается существованием концентрометров (но, правда, только определенных веществ).

Когда мы доживем до создания процедур (но объективных!) измерения психологических свойств? Когда будут открыты интерпсихофизические эффекты.

Математика – протеория, инструмент или негодный инструмент?

Существуют ли числа в природе? Разумеется, нет. Потому что числа - это отображения количеств (натуральные) и величин (=результатов измерения свойств) (все остальные). Чтобы отобразить количества и величины, нужна система счисления - элемент технологии. Неверно также говорить и о том, что в природе существуют сами количества и величины, так как для получения требуются процедуры счета и измерения. Что же все-таки существует именно в природе, давая начало количествам и величинам? Дискретность (обособленность) предметов и измеримость свойств (или просто свойства?) Просто свойства, свойства предметов и процессов. То есть свойства не свойства вообще, а имеют конкретных носителей. Потому и измеримы.

Разобранный выше вопрос поднимается сейчас в связи с постановкой другого, более важного для судеб науки, вопроса: математика - это инструмент физики или её прототеория?

В самом деле, со времен Эйнштейна возникло такое течение (в физике): математика – наша, физиков, путеводная звезда. Хотя, казалось бы, математика всего лишь предоставляет (предметным наукам) средства для отображения (через законы этих наук) добытых ими истин.

(И притом, что (до сих пор) есть науки, которым все достижения математики до сих пор не пригодились. И неизвестно, когда еще пригодятся.)

Иначе говоря, мир вовсе не устроен по законам математики.

Математика как прототеория физики - это интересная мысль. Но беспочвенная. Почему? Потому что математика, как и логика, если и прототеории, то сразу всех предметных (феноменальных) дисциплин, начиная с бухгалтерии и кончая физикой и т.д. Так как предмет изучения математики - числа и др. мат. объекты как таковые, с которыми (так или иначе) имеют дело все предметные дисциплины. Математика есть знание о математических объектах (МО), операциях над ними, их свойствах и преобразовании и решении математических высказываний. Базовыми мат.объектами являются числа.

Глядя на некоторые достижения современной математики, как-то теория групп, геометрия Лобачевского, Римана и им подобные, может сложиться впечатление, что математик – это свободный художник в том плане, что он обязан соблюдать только правила логики. Что дело математика – получать логически непротиворечивые вербальные конструкции. Что он совершенно не обязан искать интерпретации для этих конструкций и тем более предметно верифицировать их.

Но это, к сожалению, не так. То, что 2+3=5, в этом легко можно убедиться предметно, перекладывая счетные палочки. В том, что 5,3+3,7=9, предметно убеждает сложение отрезков соответствующих длин. Теорема Пифагора была открыта сначала путем измерений и только намного позже – доказана (верифицирована) вербально.

Начало чистой математике было положено тогда, когда в математике в порядке вещей стало произвольно формулировать аксиомы теории, то есть с самого начала объявлять себя выше предметного (материального) мира. Зачем это было сделано? Наверно, во-первых, в погоне за сногсшибательностью положений теории, а во-вторых – с целью во что бы то ни стало создать новую теорию (ни о чем).

Поэтому само собой понятно, почему упомянутые выше геометрии ни о чем в 1-ую очередь нашли применение в аналогичной физической дисциплине – космологии. Но только по названию таковой. А на деле – космографии (подобно географии до средневековья, когда мореплавание было развито весьма слабо и поэтому географы того времени кормили народ баснями либо собственного сочинения либо переписанными у коллег. Естественно, что лучше шли в народ (раскупались) те басни. в которых было больше фантазии.). Тем временем действительная космология развивалась в недрах астрономии и астрофизики.)

Казалось бы, все точки над “и” расставлены, и конечный вывод о функции математики для предметных наук сделан.

Однако сейчас существуют и более радикальные взгляды на современную математику, а именно объявляющие о том, что математика в современном ее виде не способна выполнить роль даже инструмента познания в предметных дисциплинах. Побеседуем с одним из представителей этого течения.

-Современные (предметные – уточнение мое. М.К.) теории базируются на идеализме сегодняшней математики (1-1=0), бухгалтерская “эготрофическая” логика которой большинством физиков принята за истинную прототеорию для физики.”

-Итак, математике вменяется в вину идеализм. Поскольку математика есть знание, то идеализм применительно к математике может быть понят только как основа на понятиях и концептах, которые, ввиду своей конечности (они не могут быть иными, поскольку суть алгоритмы распознавания) не могут не быть отвлеченностями (абстракциями, идеализациями), то есть набором только необходимых и достаточных признаков данного класса сущностей.

-В математике наиболее ярко проявляется “усеченность” (идеализм) понятий.

-А в физике – менее ярко? Правильно я вас понял? Но все же в физике эта усеченность проявляется более ярко, чем в химии. В химии более ярко, чем в биологии. В психологии еще менее ярко, в социологии – наименее ярко из всех наук. Чувствуете тенденцию? Чем хуже в науке приживается математика,…

(статистика – не в счет, так как она не дает настоящую теорию. Статистика – это просто подсчет фактов. Путь же к настоящей теории лежит через анализ концептов (свойств) и измерение свойств. А это еще попробуй сделай!)

тем менее ярко в ней проявляется “усеченность”, то есть собственно наличие понятий! Все верно! Ибо только наличие (фиксированных) понятий открывает путь данной науке к математике.

Конечный вывод: самая неусеченная наука, полный антипод математики – это философия. Которая есть “наука”, а не наука. Ибо принципы философии таковы: 1)не объявляй дефиниции; 2)не наблюдай феномены.

(Но как бы то не было, именно философия, вроде бы, помогла сложиться в свое время физике. Вспомните название основополагающего труда И.Ньютона – “математические начала натуральной философии”. Да, именно так, по-видимому, рождаются науки – на стыке антиподов, философии и математики. Почему? Над этим стоит поразмышлять.).

- Математический аппарат, который Ньютон специально создал для вычисления смещения тел, построен на ошибочном предположении (дифференциальное исчисление) - на гипотезе о непрерывном и линейном делении любой физической величины до сколь угодно малой математической величины.

- Насколько я понял, вы говорите о континууме чисел, то есть о предположении, что между любыми, заметьте, действительными числами найдется (бесконечное, то есть бесконечнозначное, но ограниченное) множество между-чисел. Но такого (предположения) и в помине нет для чисел целых! Таким образом, каковы числа, таковы и предположения (аксиомы) о них.

- Почти так, но возникают и более серьезные проблемы после принятия такой идеализации. (см. в моей последней статье цитату Энгельса.)

- Вот тот фрагмент, о котором вы говорите:

" для объяснения вращения планет Ньютон ввел в науку свою гипотезу, хотя и утверждал, что гипотез не измышляет. Это была гипотеза о новой силе, которая якобы является “врожденным” свойством материи, и присвоил ей "понятное" людям название - “притяжение”. По его предположению именно с помощью этой силы материальные тела смещаются друг к другу. Кроме того, Ньютон предложил для вычисления этой силы формулу, вытекающую из его гипотезы, и "чисто" теоретически объяснил, что при вращении планет по кругу не происходит никакой затраты внешней энергии. Для подкрепления этого предположения им был изобретен математический аппарат интегрального и дифференциального исчисления, про который Ф. Энгельс сказал следующее: “Для людей с довольно здравым, в прочих отношениях, рассудком может казаться самоочевидным, что прямое не может быть кривым, а кривое - прямым. И все же, дифференциальное исчисление приравнивает при известных условиях прямое кривому и достигает этим таких успехов, каких никогда не достигнуть здравому человеческому рассудку, закостеневшему в своем утверждении, что тождество прямого и кривого является бессмыслицей". [9, Ф. Энгельс, "Анти - Дюринг", “ХМ-ЛФ”, стр. 276.]

Характеристики

Тип файла
Документ
Размер
181,72 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7031
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее