72553-1 (736093)

Файл №736093 72553-1 (Байесова схема принятия коллективных решений в условиях противоречий)72553-1 (736093)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Байесова схема принятия коллективных решений в условиях противоречий

Леонид Соломонович Файнзильберг

Развивается подход к построению схемы принятия коллективного решения в условиях противоречивой информации, полученной от независимых экспертов. Показано, что только при равновероятных классах групповое решение должно совпадать с частным решением более квалифицированного эксперта. Предложены правила, обеспечивающие минимизацию средней вероятности ошибки коллективного решения.

Введение.

Различные сферы профессиональной деятельности человека связаны с принятием решений, которые сводятся к выбору оптимального варианта поведения из множества альтернатив [1,2]. Довольно часто такой выбор опирается на информацию, которую лицо, принимающее решение, получает в виде рекомендаций от коллектива экспертов [3-7].

Целый ряд прикладных задач, например, задач медицинской и технической диагностики, также сводится к принятию решения: необходимо определить принадлежность состояния объекта исследования к одному из нескольких заранее определенных классов (диагнозов) [8]. В простейших случаях достаточно сделать выбор между двумя возможными состояниями, например “болен” - “здоров”, “исправен - неисправен”. В других случаях число возможных диагнозов больше двух.

При решении таких задач используются методы распознавания образов, позволяющие автоматизировать процесс диагностики. С этой целью состояние объекта описывается совокупностью некоторых параметров (признаков) и строится алгоритм распознавания, который после соответствующей настройки (обучения) обеспечивает классификацию текущего состояния объекта. Обычно эффективность таких систем оценивается вероятностью ошибочной классификации.

Для повышения эффективности систем распознавания в последнее время внимание специалистов привлекают так называемые коллективные (комбинированные) классификаторы [9,10]. Их суть состоит в том, что окончательное решение принимается на основе “интеграции” частных решений, которые принимают отдельные классификаторы.

Существуют различные подходы к интеграции частных решений. В одних случаях предлагается использовать метод голосования (majority vote method) [11,12] или ранжирования (label ranking method) [13, 14]. В других - использовать схемы, основанные на усреднении или линейной комбинации апостериорных вероятностей, которые оцениваются отдельными классификаторами [15,16], либо использовать алгоритмы нечетких правил (fuzzy rules) [17]. Предлагается также проводить независимое обучение комбинированного классификатора, рассматривая частные решения как новые комплексные признаки [18,19]. Развиваются также подходы, основанные на выделении в пространстве наблюдений локальных областей, в каждой из которых только один из частных классификаторов “компетентен” принимать решение [20].

Все эти работы имеют несомненный теоретический интерес и, как показано в [21], позволяют обосновать выбор той или иной схемы интеграции, если известны алгоритмы принятия частных решений и характеристики признаков, которые используют отдельные классификаторы.

В то же время на практике, как отмечено в [1], приходится принимать решения и в тех случаях, когда рассматриваемая проблема слабо структурирована, а формализации поддаются лишь отдельные фрагменты общей постановки. Довольно часто эксперты при анализе ситуаций используют не количественные, а качественные признаки [22], а сами решения принимают на основе эвристических алгоритмов либо просто полагаются на свой предшествующий опыт и интуицию.

Разумеется в этих практически важных случаях также требуется обоснованный подход к интеграции частных решений экспертов. Например, какое окончательное решение должно быть принято, если в результате независимого обследования часть специалистов (экспертов) признала пациента здоровым, а другая часть – больным?

Можно привести и другие не менее актуальные примеры необходимости принятия коллективных решений в условиях противоречий при ограниченной априорной информации о частных решениях экспертов.

В настоящей статье развивается один из возможных подходов к решению таких задач.

Постановка задачи.

Пусть некоторый объект Z находится в одном из М возможных состояний (классов) V1 ,...,VM с известными априорными вероятностями P(V1),...,P(VM), . Ясно, что если не располагать какой либо дополнительной информацией, то состояние Z всегда следует относить к классу, имеющему наибольшую априорную вероятность. В этом случае величина

P0 =1- max{P(V1),...,P(VM)}, (1)

определяет минимальную вероятность ошибочной классификации.

Предположим теперь, что имеется N экспертов (алгоритмов) A1,…, AN, которые на основании дополнительной информации независимо один от другого принимают решения δi(Z) о состоянии объекта Z в виде индикаторных функций

δi(Z) = k, если Ai решает в пользу Vk, i =1,…,N, k = 1,..M. (2)

Будем характеризовать “квалификации” экспертов вероятностями P(Ai) ошибочной классификации, которые считаются известными для всех N экспертов на основании предыдущего опыта. При этом, естественно, допустить, что эти вероятности удовлетворяют условиям

P(Ai) < P0 для всех i = 1 ,…, N (3)

Ставится задача построения коллективного решающего правила, основанного на частных решениях экспертов, которое минимизирует среднюю вероятность ошибочной классификации.

Решающее правило 1.

Рассмотрим вначале простейший случай, когда число экспертов N=2 и число возможных классов M=2. В этом случае возможны четыре комбинации частных решений экспертов:

S11: δ1(Z) = 1, δ2(Z) = 1;

S12: δ1(Z) = 1, δ2(Z) = 2;

S21: δ1(Z) = 2, δ2(Z) = 1;

S22: δ1(Z) = 2, δ2(Z) = 2.

Как видно в ситуациях S12 и S21 решения экспертов противоречивы. Возникает естественный вопрос: какое решение следует принимать, чтобы минимизировать вероятность ошибочной классификации?

На первый взгляд может показаться, что в условиях противоречий следует принимать то решение, которое принял более “квалифицированный” эксперт. В то же время оказывается, что в общем случае такой подход неправомерен.

Для того, чтобы показать это, рассмотрим условные (апостериорные) вероятности P(V1/S12 ) и P(V2/S12 ) классов в ситуации S12. При этом для минимизации средней вероятности ошибочной классификации будем принимать окончательное решение в пользу класса V1, если

P(V1 / S12 ) > P(V2 / S12 ) , (4)

и решение в пользу V2 в противном случае.

По формуле Байеса имеем

,

.

Очевидно, что неравенство (4) имеет место в том и только в том случае , когда

P(V1)P(S12 / V1) > P(V2)P(S12 / V2) . (5)

По определению условная вероятность P(S12 / V1) есть ни что иное как вероятность того, что в ситуации, когда имеет место класс V1 , эксперт A2 принял правильное решение, а эксперт A1 ошибся. Поскольку мы предполагаем, что решения экспертов независимы, то по формуле произведения вероятностей

P(S12/V1) = [1-P(A1)]P(A2). (6)

Аналогичным образом

P(S12/V2 ) = P(A1)[1-P(A2)]. (7)

Неравенство (5) с учетом (6), (7), можно представить в виде:

P(V1)[1- P(A1) P(A2) > P(V2) P(A1) [1-P(A2)]. (8)

Из (8) вытекает, что в ситуации S12, когда решения экспертов противоречивы, объект Z следует относить к классу V1 в том и только том случае, когда

, (9)

где λ = P(V2)/P(V1) – отношение априорных вероятностей классов.

Если же выполняется соотношение

, (10)

то в ситуации S12 объект Z следует относить к классу V2

Для иллюстрации на рис. 1 показаны границы областей решений, построенные для ситуации S12 согласно условиям (9), (10) при различных значениях λ. Область решения в пользу класса V1 расположена выше соответствующей границы, а решений в пользу класса V2 – ниже соответствующей границы.

Рис. 1. Области решений для ситуации S12

1: λ = 9; 2: λ = 4; 3: λ =2.33; 4: λ =1.5; 5: λ = 1; 6: λ = 0.67;

7: λ = 0.43; 8: λ = 0.25; 9: λ = 0.11.

Аналогичным образом легко показать, что в ситуации S21 решение в пользу класса V1 следует принимать в том случае, когда

, (11)

а решение в пользу класса V2, когда

. (12)

Заметим, что из (9)-(12) непосредственно следует, что только при равновероятных классах, когда λ =1, окончательное решение совпадает с решением того из экспертов, который имеет меньшую вероятность ошибки.

В остальных же случаях, когда λ 1, т.е. окончательное решение определяется не только соотношением вероятностей ошибок экспертов, но и соотношением априорных вероятностей классов. При этом окончательное решение может не совпадать с решением более “квалифицированного” эксперта.

Поскольку примеры часто бывают более убедительными, чем формальные рассуждения, поясним сказанное на модельном примере.

Модельный пример.

Пусть P(V1)=0.3, P(V2)=0.7, а значит λ. = 2.33. Пусть далее известно, что первый эксперт ошибается в 5% случаев, т.е. P(A1)=0.05, а второй - в 8% случаев, т.е. P(A2)=0.08. Предположим, что эксперт A1 отнес объект к классу V1, а эксперт A2 - к классу V2, т.е. мы имеем ситуацию S12 противоречивых решений. Заметим, что первый эксперт более “квалифицированный”, так как P(A1) < P(A2).

Как видно из рис. 1 точка с координатами P(A1)=0.05 и P(A2)=0.08, расположена ниже границы, соответствующей λ. = 2.33. Следовательно объект должен быть отнесен к классу V2, хотя более квалифицированный эксперт A1 принял противоположное решение.

Для проверки обоснованности решения в пользу класса V2 определим по формуле Байеса апостериорные вероятности классов в рассматриваемой ситуации S12 :

= (13)

и

= . (14)

Как видим P(V1/S12) < P(V2/S12), и значит объект действительно следует отнести к классу V2.

Изменим в условиях примера соотношения априорных вероятностей классов, положив P(V1) = 0.4, P(V2) = 0.6. В этом случае λ = 0.67 и, как видно из рис. 1, точка с координатами P(A1)=0.05 и P(A2)=0.08 попадает уже в область решений в пользу класса V1. В самом деле

=

и

= ,

т.е. P(V1/S12) > P(V2/S12). Значит в этом случае объект следует отнести к классу V2, что совпадает с решением более “квалифицированного” эксперта A1.

Характеристики

Тип файла
Документ
Размер
1,03 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее