12911-1 (734918), страница 2
Текст из файла (страница 2)
Следует упомянуть также попытку Ч.Чихары9 дать объяснение математических сущностей не в рамках теории теории множеств, а в рамках теории типов. Дж.Хеллман10 и Х.Филд11 прибегают для объяснения математических сущностей к модальной логике, полагая их скорее возможностями, нежели актуальностями.
Самым важным обстоятельством при этом является то, что в основе всех подходов лежит апелляция к перцептуальному опыту, понимаемому в самом широком смысле слова. Ведь даже при номинализме Филда эпистемический доступ к областям пространства-времени, в которых зиждятся математические структуры, оказывается все-таки перцептуальным доступом. Наиболее характерны в этом отношении работы П.Мэдди12. Она считает, что предполагаемые платонистскими сущности могут быть доступны обычному восприятию.
Мэдди полагает, что абстрактные сущности математики подобны физическим сущностям, и поэтому возможен прямой перцептуальный доступ к ним. Множество физических предметов Мэдди отличает от физической совокупности этих же предметов. Каждый предмет соотносится с физической совокупностью совсем по-другому по сравнению с тем, как он соотносится с множеством этих предметов. Физические совокупности не имеют членов, в то время как множество определяется отношением членства. Именно по этой причине множество является абстрактным объектом, который, тем не менее, предполагается локализованным в том же месте пространства, в котором локализована физическая совокупность.
Следует еще раз подчеркнуть, что подобная трактовка множеств возможна за счет эпистемологических трактовок восприятия, развитых в самое последнее время. Так, согласно одному из определений, субъект Р воспринимает объект К в месте Н, если и только если, во-первых, имеется объект, принадлежащий виду К в месте Н, во-вторых, Р приобретает перцептуальное знание о виде К, и, в-третьих, объект в месте Н включен в процесс порождения состояния перцептуальной веры подходящим причинным образом. Не входя в подробности этого определения, отметим, что оно является лишь одним из нескольких подходов к определению перцептуального восприятия, и не ясно, в какой степени трактовка Мэдди множеств как перцептуально воспринимаемых объектов будет оправданной при других определениях восприятия.
Таков весьма краткий перечень основных направлений в философии математики сегодня. Недостаток места не позволяет привести критические аргументы в отношении каждой из упомянутых позиций. Но как нам кажется, эпистемологический вызов философии математики, инициированный П.Бенацеррафом, принят в качестве того, что можно назвать локальной парадигмой этой области философии.
Целищев В. В.
Список литературы
1 Mostowski A. Thirty years of foundational studies//Acta Philosophica Fennica, Fasc. XVII. - Helsinki, 1965. - p.8.
2 Ibid.
3 См.: Maddy P. Philosophy of Mathematics: Prospects for the 1990s//Synthese 88. 1991. - p.155-164.
4 См., например: Balaguer M. Platonism and Anti-Platonism in Mathematics. - Oxford University Press, 1998.
5 Benacerraf P. What Numbers Could Not Be//Philos. Rev. - 1965. - V.74, ?1; Id. Mathematical Truth//Journ. Philos. -1973. - P. 403-419.
6 Shapiro S. Foundations without Foundalism. - Oxford University Press, 1997. Resnik M. Second-Order Logic Still Wild//Journ. Philos. - 1988. - P. 75.
7 См.: Field H. Science without Numbers. - Princeton University Press, 1980.
8 Kitcher Ph. The Nature of Mathematical Knowledge, Oxford University Press, 1983.
9 Chihara Ch. Constructibility and Mathematical Existence, Oxford University Press. - 1990.
10 Hellman G. Mathematics without Numbers. - Oxford University Press. - 1989.
11 Field H. Realism, Mathematics and Modality. - Basil Blackwell. - 1989.
12 Maddy P. Realism in mathematics. - Clarendom Press. - 1990.--