151694 (733102)
Текст из файла
Концепція відносності простору-часу
Поняття простору й часу
У механістичній картині миру поняття простору й часу розглядалися поза зв'язком і безвідносно до властивостей матерії, що рухається. Простір у ній виступає у вигляді своєрідного вмістища для тіл, що рухаються, а час - ніяк не враховує реальні зміни, що відбуваються з ними, і тому виступає просто як параметр, знак якого можна міняти на зворотний. Іншими словами, у механіку розглядаються лише оборотні процеси, що значно спрощує дійсність.
Інший недолік цієї картини полягає в тому, що в ній простір і час як форми існування матерії вивчаються окремо, внаслідок чого їхній зв'язок залишається невиявленої. Сучасна концепція фізичного простору - часу значно збагатила наші природно наукові уявлення, які стали ближче до дійсності. Тому знайомство з ними ми почнемо з теорії простору - часу в тім виді, як вона представлена в сучасній фізиці. Попередньо, однак, нагадаємо деякі положення, що ставляться до класичної механіки Галілея.
Принцип відносності в класичній механіці
Уперше цей принцип був установлений Галілеєм, але остаточне формулювання одержав лише в механіку Ньютона. Для його розуміння нам буде потрібно ввести поняття системи відліку, або координат. Як відомо, положення тіла, що рухається, у кожний момент часу визначається стосовно деякого іншого тіла, що називається системою відліку. Із цим тілом зв'язана відповідна система координат, наприклад, звична нам декартова система. На площині рух тіла або матеріальної крапки визначається двома координатами: абсцисою х, що показує відстань крапки від початку координат по горизонтальній осі, і ординатою в, що вимірює відстань крапки від початку координат по вертикальній осі. У просторі до цих координат додається третя координата. Серед систем відліку особливо виділяють інерціальні системи, які перебувають друг щодо друга або в спокої, або в рівномірному й прямолінійному русі. Особлива роль інерціальних систем полягає в тім, що для них виконується принцип відносності.
Принцип відносності означає, що у всіх інерціальних системах всі механічні процеси відбуваються однаковим образом.
У таких системах закони руху тіл виражаються тією же самою математичною формою, або, як прийнято говорити в науці, вони є коваріантними. Дійсно, два різних спостерігачі, що перебувають в інерціальних системах, не помітять у них ніяких змін.
Спеціальна теорія відносності і її роль у науці
Коли в природознавстві панувала механістична картина миру й існувала тенденція зводити пояснення всіх явищ природи до законів механіки, принцип відносності не піддавався ніякому сумніву. Положення різко змінилося, коли фізики впритул приступилися до вивчення електричних, магнітних і оптичних явищ. Максвелл об'єднав всі ці явища в рамках єдиної електромагнітної теорії. Зі створенням цієї теорії для фізиків стала очевидної недостатність класичної механіки для опису явищ природи. У зв'язку із цим природно виникло запитання: чи виконується принцип відносності й для електромагнітних явищ?
Описуючи хід своїх міркувань, творець теорії відносності Альберт Ейнштейн указує на два аргументи, які свідчили на користь загальності принципу відносності.
Цей принцип з великою точністю виконується в механіку, і тому можна було сподіватися, що він виявиться правильним і в електродинаміку.
Якщо інерціальні системи нерівноцінні для опису явищ природи, то розумно припустити, що закони природи простіше всього описуються лише в одній інерціальної системі. Наприклад, у системі відліку, пов'язаної з вагоном, що рухається, механічні процеси описувалися б складніше, ніж у системі, віднесеної до залізничного полотна. Ще більш показовий приклад, якщо розглядається рух Землі навколо Сонця зі швидкістю 30 кілометрів у секунду. Якби принцип відносності в цьому випадку не виконувався, то закони руху тіл залежали б від напрямку й просторового орієнтування Землі. Нічого подібного, тобто фізичної нерівноцінності різних напрямків, не виявлено. Однак тут виникає гадана несумісність принципу відносності з добре встановленим принципом сталості швидкості світла в порожнечі (300 000 км/с).
Виникає дилема: відмова або від принципу сталості швидкості світла, або від принципу відносності. Перший принцип установлений настільки точно й однозначно, що відмова від нього був би явно невиправданим і до того ж пов'язаний з надмірним ускладненням опису процесів природи. Не менші труднощі виникають і при запереченні принципу відносності в області електромагнітних процесів.
Звернемося до уявного експерименту. Припустимо, що по рейках рухається залізничний вагон зі швидкістю v, у напрямку руху якого посилає світловий промінь зі швидкістю с. Процес поширення світла, як і будь-який фізичний процес, визначається стосовно деякої системи відліку. У нашім прикладі такою системою буде полотно дорогі. Запитується, яка буде швидкість світла щодо вагона, що рухається? Легко підрахувати, що вона дорівнює w= з-v, тобто різниці швидкості світла стосовно полотна дороги й до вагона. Виходить, що вона менше постійного її значення, а це суперечить принципу відносності, відповідно до якого фізичні процеси відбуваються однаково у всіх інерціальних системах відліку, якими є залізничне полотно й рівномірне прямолінійно, що рухається вагон. Однак це протиріччя є гаданої, тому що насправді швидкість світла не залежить від того, чи рухається джерело світла або спочиває. У дійсності, як показав А. Ейнштейн:
Закон поширення світла й принцип відносності сумісні. І це положення становить основу спеціальної теорії відносності.
Гадане протиріччя принципу відносності закону сталості швидкості світла виникає тому, що класична механіка, за заявою Ейнштейна, опиралася «на дві нічим не виправдані гіпотези»:
- проміжок часу між двома подіями не залежить від стану руху тіла відліку;
- просторова відстань між двома крапками твердого тіла не залежить від стану руху тіла відліку.
Виходячи із цих, гаданих цілком очевидними, гіпотез класична механіка мовчазно визнавала, що величини проміжку часу й відстані мають абсолютні значення, тобто не залежать від стану руху тіла відліку. Виходило, що якщо людина в рівномірно, що рухається вагоні, проходить, наприклад, відстань в 1 метр за одну секунду, те цей же шлях стосовно полотна дороги він пройде теж за одну секунду. Аналогічно цьому вважалося, що просторові розміри тіл у спочиваючих і системах, що рухаються, відліку залишаються однаковими. І хоча ці припущення з погляду повсякденної свідомості й так званого здорового глузду здаються саме собою очевидними, проте вони не погодяться з результатами ретельно проведених експериментів, що підтверджують висновки нової, спеціальної теорії відносності.
Щоб краще розібратися в цьому питанні, розглянемо, яким умовам повинні задовольняти перетворення просторових координат і часу при переході від однієї системи відліку до іншої. Якщо прийняти припущення класичної механіки про абсолютний характер відстаней і часів, то рівняння перетворення будуть мати такий вигляд:
x\1 = x - vt, y=y, z =z, t=t.
Ці рівняння часто називають перетвореннями Галілея.
Якщо ж перетворення повинні задовольняти також вимозі сталості швидкості світла, то вони описуються рівняннями Лоренца, названого по ім'ю нідерландського фізика Хендрика Антона Лоренца (1853-1928). Коли одна система відліку рухається щодо інший рівномірно прямолінійно уздовж осі абсцис х, тоді координати й час у системі, що рухається, виражаються рівняннями:
x\1 =x-vt/корінь із (1-v'2/c'2), y=y, z=z, t\1=t-vx/c'2/корінь із (1-v'2/c'2)
Опираючись на перетворення Лоренца, легко перевірити, що тверда лінійка, що рухається, буде коротше спочиваючої, і тем коротше, ніж швидше вона рухається. Справді, нехай початок лінійки перебуває на початку координат і її абсциса x = 0, а кінець x = 1. Щоб знайти довжину лінійки щодо нерухливої системи відліку ДО, скористаємося першим рівнянням перетворення Лоренца:
x (початок лінійки) =0 корінь із (1-v'2/c'2), x (кінець лінійки) =1 корінь із (1-v'2/c'2)
Таким чином, якщо в системі відліку До довжина лінійки дорівнює 1, скажемо, 1 метру, то в системі вона складе корінь із (1 - v'2 / c'2), оскільки лінійка рухається зі швидкістю в напрямку її довжини.
Неважко також встановити зв'язок між перетвореннями Лоренца й Галілея. Якщо прийняти швидкість світла нескінченно великий, то при підстановці її в рівняння Лоренца останні переходять у рівняння Галілея. Але спеціальна теорія, як відомо, постулює сталість швидкості світла й, отже, не допускає рухів зі зверх світової швидкістю, що вважається граничної для всіх рухів. Цей постулат, як відзначалося вище, треба з рівнянь Максвелла. Для того щоб гарантувати, що принцип відносності має загальний характер, тобто закони електромагнітних процесів мають однакову форму для інерціальних систем, Ейнштейну довелося відмовитися від галілеєвських перетворень і прийняти перетворення Лоренца.
Спеціальна теорія відносності виникла з електродинаміки й мало чим змінила її зміст, але зате значно спростила її теоретичну конструкцію, тобто висновок законів і, саме головне, зменшила кількість незалежних гіпотез, що лежать у її основі. Однак щоб погодитися з постулатами спеціальної теорії відносності, класична механіка має потребу в деяких змінах. Ці зміни стосуються в основному законів швидких рухів, тобто рухів, швидкість яких порівнянна зі швидкістю світла. У звичайних земних умовах ми зустрічаємося зі швидкостями, значно меншими швидкості світла, і тому виправлення, які вимагає вносити теорія відносності, мають украй малу величину й ними в багатьох випадках практично можна зневажити. У другому законі Ньютона (F = mа) маса вважалася постійної, у теорії відносності вона залежить від швидкості руху й виражається формулою:
m = m\0 /корінь із (1-v'2/c'2)
Коли швидкість тіла наближається до швидкості світла, маса його необмежено росте й у межі наближається до нескінченності. Тому відповідно до теорії відносності руху зі швидкістю, що перевищує швидкість світла, неможливі. Руху зі швидкостями, порівнянними зі швидкістю світла, уперше вдалося спостерігати на прикладі електронів, а потім і інших елементарних часток. Ретельно поставлені експерименти з такими частками дійсно підтвердили пророкування теорії про збільшення їхньої маси зі зростанням швидкості.
Поняття простору-часу в спеціальній теорії відносності
У ході розробки своєї теорії Ейнштейну довелося переглянути колишні подання класичної механіки про простір і час. Насамперед, він відмовився від ньютонівського поняття абсолютного простору й визначення руху тіла щодо цього абсолютного простору.
Кожний рух тим відбувається щодо певного тіла відліку й тому всі фізичні процеси й закони повинні формулюватися стосовно точно зазначеної системи відліку або координат. Отже, не існує ніякої абсолютної відстані, довжини або довжини, також як не може бути ніякого абсолютного часу.
Звідси стає також ясним, що для Ейнштейна основні фізичні поняття, такі, як простір і час, набувають ясного сенсу тільки після вказівки тих експериментальних процедур, за допомогою яких можна їх перевірити. «Поняття, - пише він, - існує для фізики остільки, оскільки є можливість у конкретному випадку знайти, вірно воно чи ні». Той факт, що відстань і час у теорії відносності визначаються спостерігачем стосовно певної системи відліку, аж ніяк не свідчить про те, що ці поняття мають довільний характер, установлюваний суб'єктом. Суб'єкт лише фіксує й точно визначає об'єктивне відношення, що існує між процесами, що відбуваються в різних системах відліку. Таким чином, замість абстрактних міркувань про абсолютний рух у теорії відносності розглядають конкретні рухи тіл стосовно конкретних систем відліку, пов'язаним з конкретними тілами. Інший важливий результат теорії відносності:
Зв'язок відособлених у класичній механіці понять простору й часу в єдине поняття просторово-тимчасової безперервності, або континуума.
Як ми вже знаємо, положення тіла в просторі визначається трьома його координатами x, y, z, але для опису його руху необхідно ввести ще четверту координату - час t. Таким чином, замість роз'єднаних координат простору й часу теорія відносності розглядає взаємозалежний мир фізичних подій, що часто називають чотирьох вимірнім миром Германа Минковського (1864-1909), німецького математика й фізика, що вперше запропонував таке трактування. У цьому світі положення кожної події визначається чотирма числами: трьома просторовими координатами тіла, що рухається, x, y, z. і четвертою координатою - часом t.
Головна заслуга Минковського, на думку Ейнштейна, полягає в тому, що він уперше вказав на формальну подібність просторово-тимчасової безперервності спеціальної теорії відносності з безперервністю геометричного простору Евкліда. Щоб ясніше представити ця подібність, необхідно замість звичайної координати часу ввести пропорційну їй мниму величину ict, де i позначає мниму одиницю корінь із - 1.
Нові поняття й принципи теорії відносності істотно змінили не тільки фізичні, але й загальнонаукові подання про простір, час і рух, які панували в науці більше двохсот років. Особливо різкий опір вони зустріли з боку так званого здорового глузду, що в остаточному підсумку також орієнтується на домінуючі в суспільстві наукові погляди, почерпнуті із класичної науки. Дійсно всякий, хто вперше знайомиться з теорією відносності, нелегко погоджується з її висновками. Опираючись на повсякденний досвід, важко представити, що довжина лінійки або твердого тіла в що рухається інерціальної системі скорочується в напрямку їхнього руху, а часовий інтервал збільшується.
У зв'язку із цим становить інтерес парадокс близнюків, що нерідко приводять для ілюстрації теорії відносності. Нехай один із близнюків відправляється в космічну подорож, а іншої - залишається на Землі. Оскільки в космічному кораблі, що рівномірно рухається з величезною швидкістю, темп часу вповільнюються й всі процеси відбуваються повільніше, ніж на Землі, то космонавт, повернувшись на неї, виявиться молодше свого брата. Такий результат здається парадоксальним з погляду звичних подань, але цілком з'ясовним з позицій теорії відносності. На його користь говорять спостереження над елементарними частками, названими мю-мезонами, або мюонами. Середня тривалість існування таких часток близько 2 мкс, але проте деякі з них, що утворяться на висоті 10 км, долітають до поверхні землі. Як пояснити цей факт? Адже при середній «житті» в 2 мкс ці частки можуть проробити шлях тільки 600 м. Вся справа в тому, що тривалість існування мюонів визначається по-різному для різних систем відліку. З «їх» крапки відліку, вони живуть 2 мкс, з нашої ж, земний - значно більше, так що деякі з них, що рухаються зі швидкістю, близької до швидкості світла, досягають поверхні Землі.
Незвичайність результатів, які дає теорія відносності, відразу ж порушили питання про їхню досвідчену перевірку. Попередньо, однак, помітимо, що сама ця теорія виникла з електродинаміки й тому всі експерименти, які підтверджують електродинаміку, побічно підтверджують також теорію відносності. Але крім подібних непрямих свідчень існують експерименти, які безпосередньо підтверджують висновки теорії відносності. Одним з таких експериментів є досвід, поставлений французьким фізиком Арманом Фізо (1819-1896) ще до відкриття теорії відносності. Він задався метою визначити, з якою швидкістю поширюється світло в нерухливій рідині й рідині, що протікає по трубці з деякою швидкістю. Якщо в спочиваючій рідині швидкість світла дорівнює w, то швидкість v у рідині, що рухається, можна визначити тим же способом, яким ми визначали швидкість людини, що рухається, у вагоні стосовно полотна дороги. Трубка грає тут роль полотна дороги, рідина - роль вагона, а світло - людини, що біжить по вагоні. За допомогою ретельних вимірів, багаторазово повторених різними дослідниками, було встановлено, що результат додавання швидкостей відповідає тут перетворенню Лоренца й, отже, підтверджує висновки спеціальної теорії відносності.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.