151470 (733036), страница 6
Текст из файла (страница 6)
Спеченные электроды имеют более высокие электрическую проводимость и удельную емкость, могут разряжаться и заряжаться при более высокой скорости и в более широком диапазоне температур, однако они дороже ламельных электродов, имеют относительно невысокий ресурс. Кроме того, у них выше скорость саморазряда.
Расположение электродов по отношению к корпусу аккумулятора также различно. В дисковых аккумуляторах электроды располагаются параллельно крышке, в цилиндрических - перпендикулярно. В призматических аккумуляторах в большинстве случаев электроды размещаются перпендикулярно крышке. Только в таблеточных аккумуляторах (НКТБ-80) электроды расположены параллельно крышке. Таблеточный электрод представляет собой перфорированную металлическую чашечку (таблетку), на которую напрессовывается активная масса. По существу таблеточный электрод - это разновидность ламельного электрода.
В некоторых отечественных герметичных аккумуляторах, имеющих толстые (до 2 мм) положительные электроды, в донную часть засыпается активированный уголь. Поскольку металлический корпус в этих случаях электрически соединен с отрицательным электродом, то уголь играет роль кислородного электрода. Для того чтобы обеспечить эффективный подвод кислорода, используют крупнозернистый уголь. В зарубежных аккумуляторах кислородный электрод, как правило, не используется, так как рабочие электроды обычно спеченные, малой толщины (до 0,8 мм), что обеспечивает высокую скорость газопоглощения.
3.3. Никель-металлогидридные аккумуляторы и батареи
Конструктивные исполнения НМ-аккумуляторов очень сходны с конструкциями НК-аккумуляторов. Это связано с тем, что в этих аккумуляторах развиваются близкие по значению давления газов внутри корпуса, используются близкий по составу щелочной электролит и одинаковые конструкции положительного оксидно-никелевого электрода.
НМ-аккумуляторы выпускаются различных конструкций и емкостей - от дисковых, которые имеют емкость в несколько мА ч, до мощных призматических емкостью до 250 А ч.
Дисковые НМ-аккумуляторы имеют буртиковую и безбуртиковую конструкции корпуса, аналогичные НК-аккумуляторам (см. разд.4.3). Безбуртиковая конструкция корпуса позволяет получить на 20-30% выше емкость аккумулятора при сохранении габаритных размеров за счет большого внутреннего объема аккумулятора. В последнее время появились дисковые аккумуляторы овальной формы, которая позволяет в ряде случаев при изготовлении батарей призматической формы эффективнее использовать заданный объем. Дисковые аккумуляторы состоят из одной или двух пар положительных и отрицательных электродов.
Н
аибольшее распространение среди НМ-аккумуляторов нашли аккумуляторы цилиндрической формы. Положительный и отрицательный электроды, разделенные сепаратором, скручены в виде рулона, который вставлен в корпус и закрыт герметизирующей крышкой с прокладкой (рис.4.5.1). Крышка имеет предохранительный клапан, срабатывающий при давлении 2-4 МПа в случае неправильной эксплуатации аккумулятора. Малогабаритные цилиндрические аккумуляторы небольшой мощности выпускаются и с ламельной конструкцией электродов.
В призматических НМ-аккумуляторах (рис.4.5.2) положительные и отрицательные электроды расположены поочередно, а между ними располагается сепаратор. Блок электродов вставлен в металлический или пластмассовый корпус и закрыт герметизирующей крышкой. На крышке обычно устанавливается клапан или датчик давления.
В НМ-аккумуляторах используется щелочной электролит, состоящий из КОН (6-8 М) с добавкой 10-30 г/дм3 LiOH. В качестве сепаратора в НМ-аккумуляторах используются нетканые полипропилен и полиамид толщиной 0,12-0,25 мм, обработанные смачивателем.
Положительный электрод. В НМ-аккумуляторах применяются положительные оксидно-никелевые электроды, аналогичные используемым в НК-аккумуляторах. Способы получения и удельные характеристики положительных электродов различных конструкций, используемых в НМ - и НК-аккумуляторах, были даны в § 4.3.1. В НМ-аккумуляторах в основном используются металлокерамические, а в последние годы - войлочные и пенополимерные электроды.
В НМ-аккумуляторах, применяемых при повышенных температурах, в состав оксидно-никелевого электрода вводят добавки оксидов редкоземельных металлов. Эти добавки увеличивают перенапряжение выделения кислорода при повышенных температурах и улучшают прием заряда: при 60 °С разрядная емкость НМ-аккумулятора увеличивается при введении добавок с 40 до 90%.
Отрицательный электрод. Практическое применение в НМ-аккумуляторах нашли пять конструкций отрицательного металлогидридного электрода:
-
ламельная, когда порошок водородабсорбирующего сплава со связующим веществом или без него запрессован в никелевую сетку;
-
пеноникелевая, когда паста со сплавом и связующим веществом вводится в поры пеноникелевой основы, а затем сушится и прессуется (вальцуется);
-
фольговая, когда паста со сплавом и связующим веществом наносится на перфорированную никелевую или стальную никелированную фольгу, а затем сушится и прессуется;
-
вальцованная, когда порошок активной массы, состоящей из сплава и связующего вещества, наносится вальцеванием (прокаткой) на растяжную никелевую решетку или медную сетку;
-
спеченная, когда порошок сплава напрессовывается на никелевую сетку и затем спекается в атмосфере водорода.
3.4. Серебряно-цинковые аккумуляторы
Созданию серебряно-цинкового аккумулятора в значительной степени способствовало, применение набухающей сепарации с именно такими свойствами.
Относительно хорошая электропроводность активных масс электродов исключает необходимость применения - каких-либо токопроводящих добавок или специальных каркасов для лучшего распределения тока.
К
онструкция серебряно-цинковых аккумуляторов существенно отличается от конструкции обычных щелочных или кислотных аккумуляторов. В серебряно-цинковых аккумуляторах положительные пластины изготовляются из чистого, тем или иным способом приготовленного серебра, а отрицательные - из окиси цинка в смеси с порошком металлического цинка.
Положительные пластины отделены от отрицательных несколькими слоями гидратцеллюлозной пленки, применение которой обусловлено тем, что через нее, с одной стороны, хорошо диффундирует электролит, а с другой стороны, она препятствует миграции коллоидных частиц окислов серебра от положительного электрода к отрицательному и прорастанию дендрлтов цинка в противоположном на правлении.
Собранный пакет электродов помещается в пластмассовый сосуд и заливается химически чистой калиевой щелочью плотностью обычно 1,40. Размеры электродов и сосудов подбираются таким, образом, чтобы при заполнении аккумулятора электролитом электроды испытывали соответствующее боковое давление, обеспечивающее внутреннюю механическую устойчивость, предупреждающую осыпание, активной массы электродов. Кроме того, при наличии бокового давления отпадает необходимость использования каких-либо жестких решеток и стоек, как это делается у кислотных и у обычных щелочных аккумуляторов. Устройство и внешний вид серебряно-цинковых аккумуляторов показаны на рис.98.
Различные типы серебряно-цинковых аккумуляторов отличаются габаритами и емкостью, а также конструктивным исполнением.
3.5. Никель-цинковые аккумуляторы
Конструкция никель-цинкового аккумулятора тождественна конструкции серебряно-цинкового аккумулятора (рис.118) Положительные электроды изготовляются обычно по безламельной технологии, отрицательные - из смеси порошка цинка с' окисью цинка. В шахтных аккумуляторах (рис.119) отрицательные электроды изготовляются из Смеси окиси цинка с гидроокисью кальция. Назначение последней - связывать цинк при разряде в нерастворимый цинкат кальция CaZn(OH) 4. Однако необходимый эффект достигается только при использовании в качестве электролита раствора едкого кали небольшой плотности (не более 1,06).
Обычным же электролитов - никель-цинковых аккумуляторов, является раствор КОН плотностью 1,30; в котором растворимость цинка достаточно высокая и поэтому добавление, гидроокиси кальция в отрицательные электроды не достигает цели.
С
епарацией в никель-цинковых аккумуляторах, как и в серебряно-цинковых, служит гидратцеллюлозная пленка.
3.6. Воздушно-цинковые перезаряжаемые xимические источники тока
Разработан двухслойный пористый гидрофобизированный воздушный электрод, не содержащий платиновых катализаторов и способный циклироваться (рис.4.11.4, а). Бифункциональным катализатором служил пиролизованный макроцикл кобальта - пирополимер (ПП*), созданный в ИНЕОС РАН и Ивановском государственном химико-технологическом университете.
Д
альнейшие работы показали, что более высокую активность и стабильность имеет трехслойный электрод с никелевым слоем, активным в реакции выделения кислорода, средним слоем с катализатором восстановления кислорода (диоксидом марганца, перовскитом или пирополимером) и диффузионным слоем для подвода воздуха (рис.4.11.4, б).
Разность потенциалов выделения кислорода и восстановления кислорода воздуха на таких электродах составляла 700-800 мВ. Таким образом, в воздушно-цинковых перезаряжаемых ХИТ могут использоваться достаточно активные и стабильные двухслойные электроды с бифункциональным катализатором или трехслойные электроды с двумя катализаторами.
Фирма AER Energy Resources разработала призматический воздушно-цинковый портативный ХИТ, предназначенный для ноутбуков и другой электронной аппаратуры емкостью 20 А ч [0.21]. Элемент состоит из высокопористого цинкового анода, матричного электролита в высокопористом сепараторе и тонкого двухслойного воздушного электрода.
Размеры элемента 135x76x12,2 мм. К особенностям конструкции этого ХИТ можно отнести наличие устройства для управления скоростью поступления воздуха (от нулевой до максимальной, соответствующей току пика мощности 3 А). Разрядная кривая при умеренных скоростях разряда достаточно пологая (рис.4.11.5). Диапазон рабочих температур - от 5 до +35 °С. Батарея заряжается при постоянном токе в две стадии. Сначала заряд до достижения около 85% емкости проводится при умеренной скорости (см. рис.4.11.5), затем скорость заряда уменьшается. Для полного заряда батареи требуется 24 ч. Коэффициент полезного действия близок к 50%. Для увеличения срока службы необходимо контролировать скорость заряда и не допускать перезаряда. Параметры ХИТ приведены в табл.4.11.3. Фирма Dreisbach Electromotive Inc. разработала ХИТ планарного типа биполярной конструкции, предназначенный для электромобиля [0.21]. Анод готовится из порошкового цинка. Электролит (КОН) содержит загуститель. Размеры одного элемента 330x350x7,5 мм, масса 1 кг. Для устойчивой работы ХИТ регулируется влажность воздуха и удаляется СО2. При кратковременных разрядах удельная мощность может быть увеличена, но при этом снижается удельная энергия. К основным недостаткам фирма относит невысокую удельную мощность и ограниченный срок службы сепаратора (матрицы).
В Швейцарии разрабатывается воздушно-цинковый аккумулятор емкостью 20 А ч и напряжением 12 В. Анод площадью 100-200 см2 состоит из порошков оксида цинка (84%), целлюлозы (10%), фторопласта (4%) и РЬО (2%). Применяется целлюлоза с длиной волокон более 5 мм. Паста наносится на освинцованную медную сетку. Электрод сушится при 110 °С, обертывается тремя слоями сепаратора Celgard (с эффективными размерами пор 0,02 мкм) и пропитывается раствором электролита, состоящего из КОН (15%), ZnO (насыщенного) и KF (1,5 М). Электрод формируется в течение трех циклов (С/25-С/30). Двухслойный воздушный электрод изготавливается методом каландрования. Активный слой содержит перовскитовый катализатор (с размерами частиц 2 мкм) на носителе из графитизированной сажи и фторопласт (15%). Диффузионный слой состоит из графитизированной сажи и фторопласта. Из табл.4.11.3. следует, что воздушно-цинковые ХИТ характеризуются высокими значениями удельной энергии, однако их удельная мощность относительно невелика. За последние годы удалось существенно повысить ресурс и удельную мощность этих ХИТ. Так разработчики показали возможность достижения удельной мощности до 200 Вт/кг. Стоимость ХИТ оценивается в 120-130 долл. США/(кВт ч). К недостаткам ХИТ следует отнести относительно невысокий КПД (40-45%) и чувствительность к перезаряду.
3.7. Бромно-цинковые аккумуляторные установки.
Кроме батареи аккумуляторов АУ включает два контура циркуляции, две емкости для хранения реагентов (рис.4.12.1), а также теплообменник, сепаратор для отделения водорода и систему контроля и автоматики. При последовательном соединении аккумуляторов в батарею возникают токи утечки через каналы подвода и распределения реагентов, которые могут быть снижены путем уменьшения площади сечения подводящих и распределительных каналов, однако при этом возрастают гидравлические сопротивления и потери энергии на прокачку растворов. Поэтому выбирают оптимизированные значения площади сечения подводящих и распределительных каналов. Для снижения токов утечки уменьшают число последовательно соединенных элементов. В качестве конструкционного компонента, устойчивого при контакте с бромом, нашел применение полиэтилен высокого давления, упрочненный стекловолокном.
3.8. Высокотемпературные аккумуляторы и батареи.
С
ерно-натриевые аккумуляторы. Большинство аккумуляторов имеет трубчатую конструкцию. Применение дисковых и других плоских электролитов связано с большими трудностями герметизации аккумуляторов. Используются две разновидности трубчатых аккумуляторов (рис.4.13.1). В одной из них внутри трубчатого электролита находится натриевый электрод (рис.4.13.1, б), в другой - серный электрод (рис.4.13.1, а). Применение центрального серного электрода упрощает решение антикоррозионных задач. В одном из вариантов аккумулятора трубки электролита длиной 0,3 м с толщиной стенки 1,8 - 10~3 м и внешним диаметром 3,3 1СГ2 м заполняются графитовым волокном, пропитанным серой. Около электролита графит находится в смеси с глиноземом. Токоотводом служит алюминий, защищенный слоями нихрома и графита. Электролит с центральным серным электродом помещают в трубку (корпус). В кольцевом зазоре между корпусом и электролитом находятся графитовые шарики, промежутки между которыми заполнены натрием. Графитовый заполнитель нужен для уменьшения количества свободного натрия, который может взаимодействовать с серой при образовании трещин или разрушении электролита. Аккумулятор имеет емкость 88 А ч, массу 1,06 кг, удельную энергию при двухчасовом разряде 140-125 Вт-ч/кг.
Большинство разработчиков используют конструкцию аккумулятора с центральным натриевым электродом (см. рис.4.13.1, б). В этом случае сера находится в кольце между электролитом и корпусом. Для повышения безопасности работы камеру натриевого электрода заполняют пористыми веществами из керамики, стекла или металла. Для герметизации аккумуляторов применяется ос-А1203.
Д
ля повышения коррозионной стойкости применяются многослойные корпуса. Например, японская фирма Yuasa Battery предложила корпус, состоящий из слоев Fe-Cr-Al-сплава, диффузионного слоя Аl и Сг в стали, хромированной малоуглеродистой стали и графитового покрытия. Конструкции аккумуляторов фирмы постоянно совершенствуются. Длина трубки электролита увеличилась от 200 до 530 мм, диаметр от 22 до 51 мм, толщина электролита от 1 до 2,6 мм. С 1970 по 1982 г. емкость аккумулятора возросла от 9 до 260 А ч, энергия - от 15 до 450 Вт ч. Аккумуляторы емкостью 50-200 А ч с удельной энергией 85-150 Вт - ч/кг, удельной мощностью 60-130 Вт/кг и наработкой до 1000 циклов разработала фирма General Electric (США), однако в середине 80-х годов фирма работы в этом направлении свернула.
















