151009 (732882), страница 2

Файл №732882 151009 (Термодинамика растворов неметаллов в металлических расплавах) 2 страница151009 (732882) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

1. Связанные с взаимодействием растворенного атома (неметалла) с соседними атомами растворителя.

2. Обусловленные взаимодействием между соседними атомами растворителя, находящимися в первой координационной сфере вокруг атома металлоида.

3. Связанные с неэквивалентностью энергетических состояний

атомов растворителя, находящихся в первой координационной сфере вокруг атома неметалла, и атомов этого же элемента, находящихся в “объеме” расплава (т. е. вне первой координационной сферы вокруг атома металлоида).

В дальнейшем предполагается, что атомы неметалла А4 в жидком разбавленном растворе трех металлов А1, А2 и А3 занимают “квазимеждоузлия” с координационным числом z. Каждый атом А4 в растворе в качестве ближайших соседей имеет j атомов А1, k атомов А2 и l атомов А3 . В растворе существует (z+1)(z+2)/2 видов таких конфигураций, которые называются кластерами и обозначаются . При этом надо учитывать, что в расплаве атомы находятся в непрерывном движении, так что имеет смысл говорить об усредненной в течение некоторого времени2 t конфигурации атомов.

В расплаве можно выделить две области. Первая область, которую обозначим “B”, содержит все металлические атомы, не имеющие в качестве ближайших соседей атомов А4. При рассмотрении разбавленных растворов металлоидов, в область “B” попадает большая часть атомов расплава. Вторая область, которую обозначим “C”, состоит из атомов А1, А2 и А3, которые в качестве ближайших соседей имеют атомы А4. Очевидно, атомы металлоида также входят в область “C”.

Если рассматривать расплавы системы А1 - А2 - А3 - А4 с различным содержанием компонентов, то в расплаве произвольного состава при данной температуре будет устанавливаться строго определенное равновесное распределение атомов А4 по кластерам, которое может быть охарактеризовано набором некоторых величин cj,k , где каждая из cj,k есть ни что иное, как доля атомов компонента А4, находящихся в конфигурации .

При изменении температуры (или состава) в расплаве устанавливается новое равновесное распределение cj,k. В этом случае процесс перехода расплава в новое положение равновесия можно представить в виде набора уравнений реакций следующего вида (количество уравнений кратно числу различных типов кластеров в системе):

+ А2(“B”) = + А1(“B”)

+ А3(“B”) = + А3(“B”) (1)

Для коэффициента термодинамической активности металлоида в разбавленном в растворе из трех металлических компонентов получено следующее уравнение

, (2)

где коэффициент термодинамической активности A4 в четырехкомпонентном расплаве; γ1(1-2-3), γ2(1-2-3), γ3(1-2-3) коэффициенты термодинамической активности компонентов тройной системы А1А2А3 ; γ4(1), γ4(2), γ4(3) – коэффициенты термодинамической активности А4 в двойных расплавах А1А4, А2А4 и А3А4 соответственно; сочетания из z элементов по j ; x1, x2, x3 – мольные доли металлических компонентов в четырехкомпонентном расплаве; h12 , h23 и h13 – энергетические параметры (константы для тройных систем А1–А2–А4, А2–А3–А4 и А1–А3–А4 при каждой температуре), учитывающие нелинейный характер зависимости смещения электронной плотности между компонентами кластера от его состава; t – параметр, принимающий значения в пределах от 0,25 до 0,5 и учитывающий ослабление связей типа металл-металл для атомов, находящихся в первой координационной сфере вокруг атома А4.

Для концентраций кластеров различного типа получены следующие уравнения в котором количество слагаемых совпадает с количеством типов кластеров, различного состава и равно (z+1)(z+2)/2.

, (3)

где j = 0,1,…z; k = 0,1,…z; j+kz .

Очевидно, должно выполняться соотношение

, (4)

Необходимо сделать некоторые замечания, относящиеся к определенной группе четырехкомпонентных расплавов. Если в системе А1–А2–А3–А4 концентрации компонентов A1 и A2 могут изменяться в широких пределах, а концентрации A3 и A4 не превышают 1-2 % ат., то влияние третьего металлического компонента на термодинамическую активность металлоида A4 в расплаве удобно оценивать с помощью удельного параметра взаимодействия σ34, который определяется следующим образом

,

или с учетом (2),

, (5)

где - коэффициент активности А3 в тройном расплаве А1-A2-A3 при x30.

Для физической интерпретации модели в случае четырехкомпонентной системы А1234 проанализировано влияние характера взаимодействия3 между металлическими компонентами на кластерный состав расплава и термодинамические характеристики растворенного металлоида А4. Расчеты, проведенные для ряда модельных четырехкомпонентных систем, отличающихся по характеру взаимодействия между компонентами, показали, что в расплаве из четырех компонентов между атомами различных элементов наблюдается своеобразная “конкуренция”. В частности, при сильном взаимодействии между атомами А1 и А2 (отрицательные отклонения от идеального раствора) атомы элементов А1 и А2 менее "активно" участвуют в образовании кластеров с центральным атомом А4, что приводит к увеличению концентрации кластеров, в которых атом А4 связан с атомами А3 (рис. 1, 2), и наоборот.

Результаты расчета термодинамических характеристик для расплавов Fe-Ni-Co-N и Ag-Cu-Sn-O во всем диапазоне концентраций металлических компонентов по уравнениям обобщенной координационно-кластерной модели (ОККМ) согласуются с экспериментальными данными (рис. 3, 4), полученными в работах У.Блока ( Block U., Stuve H.P. Z. Metallkunde. - 1969. - Bd. 74. - S.709) и Р.Пелка ( Blossey R.G., Pehlke R.D. Transactions of the metallurgical society of AIME. - 1966. - V. 236. - № 4. - P. 566).

Р ис. 1. Зависимость доли атомов А4, находящихся в конфигурации A4[(A1)j(A2)k(A3)l], от содержания А2 в расплавах, насыщенных компонентом А4, при х3=0,01 (h12=h23=h13=0) :

1 - А4 [(А1)32)0(A3)1]; 2 - А4 [(А1)22)1(A3)1];

3 - А4 [(А1)12)2(A3)1]; 4 - А4[(А1)02)3(A3)1]

( Q12 - энергия взаимообмена в двойной системе A1-A2 в приближении регулярных растворов )

Рис. 2. Зависимость доли атомов А4, находящихся в кластерах всех типов с атомами А3, от содержания компонента А2 в расплавах, насыщенных компонентом А4, при х3=0,01 (h12=h23=h13=0)

Рис. 3. Растворимость азота С (10-4%) в расплавах Fe-Ni–Co
при 1600оС и давлении 1 атм

- эксперимент (Р.Пелк );

[ ] - расчет по уравнениям ОККМ

Рис. 4. Энергия Гиббса (кДж/моль) растворения кислорода в
расплавах Ag-Cu-Sn при 1200оС и давлении 1 атм
(стандартное состояние: 1ат.% кислорода).

- эксперимент (У.Блок );

[ ] - расчет по уравнениям ОККМ

Прогнозирование изменения термодинамической активности

изотопов водорода в жидком литии и Li17Pb83

в присутствии металлических примесей

Уравнения ОККМ использовались для оценки влияния небольших (менее 0,5 ат.%) добавок третьего компонента на термодинамическую активность изотопов водорода в жидком литии. Расчеты, проведенные для систем Li – T – Al, Li – T – Mg, Li – T – Si, Li – T – La и Li – T – Y, показали, что добавки алюминия, магния и кремния практически не влияют на термодинамическую активность трития в литии при температурах 400-800ОС. В то же время добавки иттрия и лантана в значительной степени снижают термодинамическую активность трития. Влияние иттрия проявляется сильнее при температурах ниже 500ОС.

Для расплавов системы литий – свинец при концентрациях близких к эвтектической Li17Pb83 добавки иттрия являются самыми эффективными с точки зрения снижения термодинамической активности трития. Расчеты, проведенные для всего диапазона концентраций двойной системы литий – свинец, показали, что небольшие (менее 0,5 ат.%) количества иттрия смещают концентрационную границу, разделяющую расплавы с отрицательными и положительными отклонениями от идеальности в область более высоких содержаний свинца (рис. 5). Используя зависимость производной коэффициента термодинамической активности трития по температуре от содержания иттрия в расплаве, было установлено, что добавка иттрия изменяет пороговую концентрацию, при которой реакция растворения трития в расплаве литий – свинец из экзотермической становится эндотермической.

Из расчетов удельного параметра взаимодействия иттрий – тритий, проведенных для различных содержаний свинца в расплавах системы Li-Pb-Y-Т, следует что добавка иттрия в максимальной степени снижает коэффициент термодинамической активности трития в расплавах, для которых 0,3<xPb<0,8 (xPb –мольная доля свинца в расплаве). Исследование

Рис. 5. Влияние содержания свинца на величину DK для растворов трития в бинарных расплавах Li-Pb (1) и в расплавах Li-Pb, содержащих 0,1 ат.% Y (2), при 659оС:

(1) и (2) - расчет по уравнениям ОККМ ;

- экспериментальные данные для двойной системы Li-Pb

(Chan Y.C., Veleckis E. J. Nucl. Mater., 1984. - V. 122-123.- P.935)

зависимости кластерного состава расплавов этой системы от температуры показало, что для расплава по составу близкого к эвтектическому доля атомов трития, находящихся в кластерах всех типов, содержащих иттрий, максимальна при температурах 450-500ОС.

Уравнения, полученные на основе координационно-кластерной модели четырехкомпонентных расплавов, позволяют не только находить величины коэффициентов термодинамической активности неметаллического компонента (трития), но и определять положение критических точек, где расплав меняет характер отклонения от идеальности, а также точек, где реакция растворения элемента внедрения из экзотермической становится эндотермической.

Для расчета равновесного коэффициента распределения элемента внедрения между твердой фазой и двухкомпонентным металлическим расплавом получены уравнения, в которых учтено, что коэффициент распределения является функцией всех парных энергий взаимообмена между компонентами четверной системы. На примере системы иттрий – литий – свинец – водород показано, что учет взаимодействия между атомами иттрия и водорода в жидкой фазе приводит к более низким значениям коэффициента распределения водорода, чем те, которые получаются в результате стандартных расчетов. Это позволяет объяснить наблюдаемое в ряде систем несоответствие экспериментальных и расчетных величин коэффициента распределения.

Характеристики

Тип файла
Документ
Размер
28,08 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее