150712 (732809), страница 4

Файл №732809 150712 (Радиоактивные изотопы и соединения) 4 страница150712 (732809) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Для исследователей липидов, простагландинов, гормонов, углеводов, антибиотиков, витаминов и многих других классов соединений, тритий — главный (часто единственно доступный) инструмент повышения чувствительности методов. Это же касается исследований рецепторов, модуляторов и вообще "сигнальных" систем организмов. Поэтому тритий, не имеющий пока особых альтернатив, по-прежнему, остается основным "рабочим" радионуклидом в life science.

Главным недостатком трития является трудность его детекции и количественного измерения из-за слишком "слабого" β-излучения. Наиболее эффективный способ измерения — жидкостной сцинтилляционый счет, о котором более подробно дана информация в разделе 2.2. Особо следует подчеркнуть, что именно для трития снижение эффективности счета ("гашение") играет существенную роль в количественных измерениях.

Авторадиография тритиевых соединений тоже имеет ряд специфических особенностей. Прямая детекция β-излучения трития фоточувствительным материалом — процесс очень долгий и используется редко. Зато была предложена оригинальная модификация, согласно которой образец, содержащий тритий, обрабатывается сцинтилляционными веществами, и авторадиография превращается в своеобразную "автофлюорографию". Для пластин ТСХ — это опрыскивание раствором РРО, который уже упоминался в разделе "жидкостной сцинтилляционный счет". После высушивания такая пластинка экспонируется с рентгеновской плёнкой, и далее — как обычно.

Для ПААГ предложена процедура пропитки геля тем же РРО. Сначала приходится заместить воду в геле на диметилсульфоксид (DMSO), т.к. РРО нерастворим в воде. Затем гель пропитывают раствором РРО в DMSO, после чего обратно замещают DMSO на воду (РРО выпадает в геле в осадок и гель становиться белым). После всех этих процедур гель высушивают и экспонируют с рентгеновской пленкой. "Занудность" этих операций окупается сторицей — получается возможность детекции продуктов, меченных тритием, (например пептидов, меченных 3Н-лейцином) сразу после электрофореза в ПААГ.

Еще одна "деликатная" сторона использования соединений, меченных тритием, — это химическая стабильность таких соединений. Как ни странно на первый взгляд, но радиолиз — химическое разрушение молекул под действием ионизирующего излучения — именно для соединений трития играет весьма существенную роль. Это важно помнить, т.к. большой период полураспада (12 лет) якобы позволяет использовать синтезированные вещества в течение месяцев ( а иногда и лет) с момента паспортизации. Здесь надо быть очень осторожным, т.к. часто при неправильных условиях хранения вместо целевого соединения остается сложнейшая смесь продуктов радиолиза, где нужного соединения не более трети. Типичная ошибка — хранение водного раствора тритиевого соединения в замороженном виде. В замороженном виде высокомеченные тритием соединения "рассыпаются" гораздо быстрее, чем в растворе. Поэтому для длительного хранения меченых тритием соединений при -20°С обязательно добавляют спирт или другой "антифриз", препятствующий замерзанию раствора.

С химической стабильностью соединений трития связана еще одна проблема. Устойчивость химической связи водорода (любого изотопа водорода) с другими атомами в молекуле зависит от природы этой связи. Соответственно, возможность обмена водорода в молекуле меченого соединения с растворителем, например с водой, обязательно надо учитывать. Водород карбоксильной группы в воде за счет электролитической диссоциации обменивается мгновенно, а водород в алкильном или арильном фрагменте молекулы обменивается очень трудно — при нормальных условиях обмена нет. Между этими "крайними" примерами находится огромное многообразие молекул с разной способностью к "водородному обмену", и для разных биохимических процессов вопрос о стабильности тритиевой метки может быть или чрезвычайно актуальным или совершенно несущественным.



7. Радионуклид 14C

Радионуклид 14C получают облучением нитрида алюминия по реакции:

14N + 0n —> 14C + 1p

в виде 14C-карбида. Из него 14C выделяют в виде 142, который обычно поглощают Ba(OH)2, и полученный 14C-карбонат является основным радиоактивным сырьем для всех синтезов 14C-соединений. Всё обилие 14C-меченых соединений в каталогах разных фирм-производителей синтезируется двумя путями:

    1. Биосинтез. В питательную среду к микроорганизмам (обычно это водоросли типа хлореллы) добавляют 142 в качестве единственного источника углерода. После выращивания из биомассы выделяют равномерно меченые 14C-соединения. Таким путем получают аминокислоты, нуклеозиды, сахара, липидные компоненты и другие природные соединения. Иногда 14C-биомассу водорослей используют как источник углерода (своего рода меченый пептон) для выращивания штамма-продуцента какого-нибудь важного соединений.

    2. Химический синтез. Синтез всего многообразия органических веществ из карбоната — классическая задача органической химии. Знаменитые цепочки превращений органических соединений (кошмар многих поколений студентов и школьников) в полной мере реализованы в синтезе 14C-соединений. Все органические соединения, которые не удается получить биосинтезом, синтезируют химически.

Схема распада углерода-14: 14C —> 14N + e. Хотя с детекцией 14C особых проблем не возникает, применение 14C-соединений в life science крайне ограничено. Это связано с очень низкой молярной активностью 14C-соединений, и даже кратно меченые молекулы не меняют ситуацию радикально. Обычно молярная активность 14C-соединений не превышает 20÷50 мКи/ммоль, (у соединений трития почти в 1000 раз выше, а у фосфора-32 или 33 еще в 100 раз выше) и, следовательно, по чувствительности методы с использованием 14C-соединений значительно уступают методам, в которых используют 3Н-соединения. На сегодняшний день 14C-соединения прочно удерживают за собой только одну "нишу" в life science — это изучение метаболизма новых лекарственных (или косметических) препаратов. Для изучения деградации, накопления в органах, скорости и путей выведения, биодоступности и прочих аспектов метаболизма равномерно меченые 14C-соединения остаются востребованными, несмотря на очень высокую стоимость и трудоемкость синтеза.



8. Радионуклиды 32P и 33P

Радионуклиды 32P и 33P — очень удобны для life science, но их применение ограничено природой, т.к. фосфор в природных органических соединениях присутствует гораздо реже, чем водород, углерод или кислород.

Получение радиоактивных изотопов фосфора (32Р и 33Р) с технической точки зрения одинаково: облучение элементарной серы особой чистоты в ядерном реакторе.

Однако, с экономической точки зрения разница колоссальная. Дело в том, что 32Р получают по реакции 32S + 0n —> 32P + 1p в виде 32P-ортофосфата. Стартовый материал мишени — природная элементарная сера, содержащая более 92% стабильного изотопа 32S. Изотоп 33Р получают по реакции 33S + 0n —> 33P + 1p также в виде 33P-ортофосфата. Но мишенью для этой реакции служит изотоп 33S, содержание которого в природе составляет доли процента. Для получения 33Р высокого качества необходимо использовать для облучения только 33S с обогащением не ниже 98,5÷99,0%. Это сразу существенно увеличивает стоимость продукта, т.к. стоимость обогащенной серы-33 больше природной серы примерно на 6 порядков (в миллион раз). Поэтому соединения фосфора-33 всегда будут дороже аналогичных соединений, меченных фосфором-32.

Схемы распада радионуклидов фосфора : 32P —> 32S + e и 33P —> 33S + e

Исходным радиоактивным сырьем для получения соединений, меченных радиоактивными изотопами фосфора, всегда является ортофосфорная кислота (32Р или 33Р соответственно). Так как химия и биохимия 32Р и 33Р абсолютно одинаковы, в дальнейшем речь пойдет о фосфоре-32, с учетом того, что все это распространяется и на фосфор-33. В особых случаях, когда необходимо, будут отмечаться различия. Собственно сама 32Р-орто-фосфорная кислота в life science используется редко. Обычно это выращивание микроорганизмов (бактерий или дрожжей) или культуры клеток в среде, содержащей 32Р-ортофосфат. Полученную меченую биомассу отделяют от культуральной жидкости, а затем исследуют. Несколько замечаний по этому процессу.

    1. Исходная 32Р-ортофосфорная кислота без носителя (этот термин означает, что в препарат не добавляли специально нерадиоактивную ортофосфорную кислоту) имеет молярную активность не менее 5000 Ки/ммоль, и, соответственно, концентрация собственно фосфата в среде только за счет радиоактивного фосфора будет не выше 10-8 М. Для биологических (микробиологических) работ такая концентрация фосфата в среде слишком низкая — клетки будут "считать", что фосфора нет вообще. Поэтому в культуральную среду обязательно добавляется "холодный" фосфат в концентрации, необходимой для усваивания. Обычно это не ниже 10-4 М. Не пытайтесь "включить" радиоактивный фосфат в культуру клеток без "холодного" носителя. Часть радиоактивного фосфата просто сорбируется на поверхности посуды или клеток, а включения в клеточный обмен не произойдет.

    2. Оптимальная концентрация фосфата для таких экспериментов подбирается индивидуально для разных задач и видов клеток. "Переносить" данные по оптимальной концентрации с одного вида экспериментов (или клеток) на другой надо осторожно.

Основными соединениями фосфора-32, применяемыми в life science, являются нуклеозид-5'-трифосфаты, меченные в альфа или гамма положении. В конце 60-х — начале 80-х годов ХХ века было разработано несколько способов синтеза этих соединений, но после работы Джонсона и Валсеса, предложенный ими ферментативный способ стал рутиной как для лабораторного синтеза, так и для масштабного производства. Химические методы синтеза меченных фосфором-32 соединений используются, когда нет ферментативного пути, например для синтеза синтетических аналогов нуклеотидов.

Измерение активности радионуклидов 32Р и 33Р — операция достаточно простая — любой жидкостной сцинтилляционный β-счетчик считает 32Р и 33Р с эффективностью не ниже 90%. Для фосфора-32 использование сцинтиллятора совсем не обязательно. Обычно измерение фосфора-32 проводят за счет "свечения Черенкова" — эффекта, обусловленного взаимодействием высокоэнергетических электронов с окружающей средой. Не вдаваясь в физические аспекты Черенковского свечения, следует знать, что сцинтилляционные счетчики "считают" фосфор-32 без всякого сцинтиллятора с эффективностью около 30%. Черенковское свечение фосфора-32 можно легко увидеть. Нанесите на подложку (пластинку ТСХ или фильтровальную бумагу) 1 мкл раствора 32Р-ортофосфорной кислоты (или любого другого соединения фосфора-32) с активностью 50 мкКи (около 2МБк) и поместите подложку между плоскостями двух кусков обычного стекла, толщиной 4÷5 мм. В темноте (только без "красного" света) через 3÷5 мин. адаптации глаза будет хорошо видно зеленовато-голубое свечение пятна, соответствующего точке нанесения раствора на подложку. Не подносите такой источник близко к глазам — все прекрасно видно с расстояния 40÷60 см.

Весьма полезным для работы является возможность измерения фосфора-32 прямо в пластиковых пробирках, помещенных в стандартный сцинтилляционный флакон. На практике это означает, что вы можете измерять активность своего образца, например, вырезанный кусок из агарозного геля или пробирку с фракцией элюата хроматографического разделения, а затем использовать образец для дальнейшей работы. Такая особенность фосфора-32 является его важнейшим преимуществом перед другими β-радионуклидами, применяемыми в life science. Все остальные β-радионуклиды, приведенные выше в таблице 1, включая фосфор-33, требуют для измерения в сцинтилляционном счетчике прямого контакта с сцинтилляционной жидкостью, т.е. добавления образца прямо во флакон, содержащий сцинтиллятор. Естественно, после этого образец для дальнейшей работы теряется.

Среди радионуклидов, применяемых в life science, фосфор-32 является "рекордсменом" по чувствительности методик с его использованием. Однако, простой расчет чувствительности метода (поделите обычный предел обнаружения фосфора-32, т.е. около 3÷4 Бк, на максимальную молярную активность используемого соединения, т.е. около 2х1017 Бк/моль) показывает величину около 10-17 моля. К сожалению, это неправильно. Причина этого в высоком "биологическом" фоне. Например, при постановке ДНК-полимеразной реакции контрольная проба, в которую добавляют все компоненты реакции кроме фермента, также показывает некоторое "включение" радиоактивного фосфора в ДНК, на самом деле обусловленное просто неспецифической сорбцией радиоактивного предшественника биосинтеза. Такая неспецифическая сорбция есть всегда в любом биохимическом эксперименте и фактически чувствительность метода будет определяться величиной этого "биологического" фона. Например, в реакцию добавлено 0,1 МБк [α-32P] dNТР (это примерно 2х106 срм по Черенкову), ферментативое включение в ДНК около 30%, а неспецифическая сорбция — фон — составляет около 0,1%, т.е. 2х103 срм. Граница достоверности определяемой величины будет определяться именно неспецифической сорбцией (в этом примере 2х103 срм), которая обычно гораздо выше фона измерительной аппаратуры. В этом примере фон 2000 срм, и, следовательно, достоверная величина измеряемого эффекта должна быть не ниже 6000 срм, что в 30 раз снижает чувствительность по сравнению с "идеальной" расчетной.

Использование фофора-32, а позднее и фосфора-33, начиналось еще в 50-х годах ХХ века, однако после разработки методов секвенирования ДНК с помощью фосфора-32 спрос на соединения, меченные фосфором-32, достиг просто огромных величин. В "пике" потребления нуклеотиды, меченные фосфором-32, производились в мире в объеме несколько десятков кюри ежемесячно (это десятки тысяч фасовок каждый месяц), и только флюоресцентные методы секвенирования спустили потребление радиоактивного фосфора с заоблачных высот к нынешнему состоянию.

Традиционно меченые фосфором нуклеотиды используются по нескольким направлениям:

    1. Введение в ДНК (РНК) за счет нуклеозид-5' — [α-32Р]-трифосфатов и изучение соответствующих ферментов.

    2. Введение в олигонуклеотиды 32Р фосфорилированием 5'-конца с помощью [γ-32P] ATP и полинуклеотидкиназы.

    3. Фосфорилирование белков протеинкиназами с помощью [γ-32P] ATP.

Наиболее востребованным меченым соединением фосфора-32 является аденозин-5'-[γ-32P] трифосфат, который обычно сокращенно обозначают [γ-32P] АТР. Это вполне объяснимо, т.к. кроме широко известной методики введения 32Р-метки на 5'-конец олигонуклеотида с помощью Т4 полинуклеотидкиназы, [γ-32P] АТР используют для изучения различных фосфотрансфераз (киназ), в том числе и для биоскрининга химических библиотек протеин-киназными тестами. Нуклеозид-5'трифосфаты, меченные фосфором-32 в α-положении, сокращенно обозначают [α-32Р] NТР или [α-32Р] dNТР (рибо- или 2'-дезоксирибонуклеотиды соответственно) и используют, в основном, для введения "метки" в нуклеиновые кислоты с помощью РНК- или ДНК-полимераз. Естественно, сюда же примыкают исследования биосинтеза нуклеиновых кислот и их ферментативного аппарата. Технология введения 32Р-метки в нуклеиновые кислоты подробно изложена в "классике методов" ( Маниатис Т. Фрич Э. Самбрук Дж. "Молекулярное клонирование" М. "Мир" 1984 г.). Поэтому я отмечу только некоторые характерные для начинающих ошибки.

Характеристики

Тип файла
Документ
Размер
308,92 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее