150467 (732730), страница 2

Файл №732730 150467 (Лазерный свет) 2 страница150467 (732730) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Поскольку параметр порядка вынуждает отдельные электроны двигаться совершенно синхронно и тем самым определяет их действия, мы снова можем сказать, что параметр порядка «порабощает», подчиняет себе отдельные элементы системы. Верно и обратное: параметр порядка (т. е. световая волна) есть результат синхронных колебаний отдельных электронов. Возникновение параметра порядка, с одной стороны, и когерентного поведения электронов — с другой, взаимно обуславливают друг друга; в таких случаях принято говорить о циклической причинности. Перед нами еще один типичный пример синергетического поведения. Для обеспечения синхронности колебаний электронов должен существовать параметр порядка (в данном случае эту роль выполняет световая волна). Однако существование самой световой волны возможно только благодаря синхронным колебаниям электронов. Словом, все выглядит так, что мы должны бы задействовать некую высшую силу, единожды создавшую некое изначальное состояние упорядоченности, которое затем сможет самостоятельно поддерживать свое существование. Однако в действительности все происходит иначе. В самом начале имеет место конкурентная борьба и процесс отбора, в результате которого все электроны становятся «рабами» какой-то определенной волны. При этом интересно отметить, что все волны, совершенно случайно — спонтанно — порожденные электронами, должны быть рассортированы в соответствии с законами конкурентной борьбы, т. е. пройти через некий отбор. Перед нами типичный для синергетики пример взаимоотношений между случайностью и необходимостью: «случайность» здесь воплощена в спонтанном излучении, а «необходимость» — в неумолимом законе конкуренции и отбора.

Лазер: открытая система с фазовым переходом

Можно ли любую лампу превратить в лазер, просто добавив к ней зеркала? Собственно, почти так оно и есть, однако следует подробнее рассмотреть один ключевой момент. Световые волны, испускаемые возбужденными электронами в обычной лампе, разбегаются прочь с такой быстротой, что другие электроны практически не имеют времени на то, чтобы поддержать колебания этих волн. Это значит, что вынужденное излучение состояться не может, и отдельные волновые цуги оказываются не в состоянии хоть сколько-нибудь «продлить себе жизнь». Лампа испускает самые различные волны таким образом, что они совершенно не зависят друг от друга. Зеркала в лазере предназначены для того, чтобы воспрепятствовать движущимся в осевом направлении волнам покинуть лазер — для того чтобы осталось достаточно времени для усиления волн посредством вынужденного излучения. Однако не существует зеркал, совершенных настолько, чтобы удержать свет в лазере вечно; кроме того, имеются и другие причины, по которым свет «теряется» (например рассеяние). Разумеется, при любом применении лазера часть света зеркала должны выпускать: в конце концов, лазерный свет нужен нам для того, чтобы что-нибудь им облучать.

Таким образом, задача генерации лазерного света становится задачей чисто количественной. Необходимо возбуждать световые электроны атомов газа с такой скоростью, чтобы они оказались в состоянии усиливать световые волны достаточно быстро и эффективно для того, чтобы компенсировать потери от несовершенства зеркал. Другими словами, мы должны постараться устроить все так, что потери энергии волн покрывались бы энергией, получаемой в результате вынужденного излучения. Итак, переход от света обычной лампы к лазерному свету происходит скачкообразно при повышении силы электрического тока, пропускаемого нами через газоразрядную трубку. Существует некое критическое значение силы тока, при котором состояние лазера радикально изменяется — даже в том случае, если ее изменение ничтожно мало. Работу лазера мы можем поддерживать единственным способом: постоянно снабжая его энергией (например в виде электрического тока). Одновременно лазер будет постоянно излучать энергию в виде лазерного света (не будем забывать и о тех неизбежных потерях энергии, которые уже упоминались). Лазер, таким образом, постоянно обменивается энергией с окружающим миром, а значит, является открытой системой. В то же время лазер является системой, чрезвычайно далекой от теплового равновесия — точно так же, как двигатель внутреннего сгорания.

Скачкообразное возникновение макроскопического состояния упорядоченности очень напоминает поведение ферромагнетика или сверхпроводника, при котором также возникают состояния с совершенно новыми физическими свойствами. Правда, эти системы находятся в состоянии теплового равновесия с окружающей средой, что и отличает их от нашего случая.

Именно поэтому многие физики были поражены, когда мы в Штутгарте, одновременно с группой наших американских коллег, смогли установить, что фазовый переход в лазере демонстрирует все свойства, характерные для обычных фазовых переходов, в том числе критические флуктуации и нарушение симметрии. Таким образом, лазер стал как бы мостом между неживой и живой природой. Состояние упорядоченности в лазере поддерживается за счет процессов самоорганизации, протекающих благодаря притоку дополнительной энергии извне. Лазер — как и все биологические системы — система открытая.

Интересный мостик к физиологическим процессам выстраивается, прежде всего, в ходе исследований химических лазеров, где происходит своего рода обмен веществ. Химический лазер нуждается в водороде и фторе; эти вещества очень активно вступают в реакцию друг с другом. В результате между атомами водорода и фтора возникает новое «партнерство», причем химическая реакция протекает настолько бурно, что вызывает возбуждение световых электронов, а они, в свою очередь, генерируют лазерный свет уже знакомым нам способом.

В данном случае энергия создается в ходе химических реакций. Химическая энергия, высвобождаемая в виде тепла, преобразуется при этом в конечном счете в строго упорядоченную энергию синхронного движения волн лазерного света. Перед нами своего рода обмен веществ, при котором низкоуровневая энергия горения преобразуется в высокоуровневую энергию лазерного света. Нечто похожее происходит в двигателе, цилиндр которого наполнен газовой смесью. Тепловая энергия, распределенная по многим степеням свободы, преобразуется здесь в кинетическую энергию поршня, которая, собственно, и заставляет автомобиль двигаться. В дальнейшем мы еще не раз столкнемся с тем, что подобная трансформация микроскопических энергий в макроскопическую энергию с меньшим числом степеней свободы оказывается одним из основных принципов протекания биологических процессов.

Лазер можно заставить работать не только повышая силу тока и увеличивая тем самым частоту возбуждений отдельных электронов. Следует обратить внимание и на другой процесс, при котором мощность накачки остается прежней, но число атомов в лазере постоянно увеличивается. Исследования показывают, что до тех пор, пока количество атомов в лазере не достигает определенного значения, он действует в режиме обычной лампы, но как только число атомов увеличится до критического, возникает лазерный свет. В сущности, перед нами переход количества в качество.

Рис. 10. Между двумя зеркалами распространяются только совершенно определенные волны

Приведенные примеры показывают, что процессы самоорганизации могут быть запущены различными способами. В дальнейшем, обратившись к биологии, мы займемся этой темой подробнее.

С другой стороны, мостик к биологии можно перебросить и на основе уже имеющихся примеров. Благодаря использованию зеркал в лазере мы создаем для атомов и генерируемых ими световых волн специфическую «окружающую среду». Физикам известно, что между двумя параллельными зеркалами могут существовать только совершенно определенные световые волны (рис. 10). Это означает, что изначально ясно, какие именно волны могут рассматриваться в качестве лазерных. Вполне может случиться так, что волны, «пользующиеся успехом» у световых электронов, окажутся неспособны распространяться между зеркалами. Однако это не приведет к отказу электронов от участия в генерации лазерного света; электроны просто выберут волну с такими характеристиками, которые окажутся ближе всего к «полюбившимся» им ранее волнам (правда, это срабатывает лишь до определенных пределов). При медленном изменении расстояния между зеркалами изменится, соответственно, и процесс испускания электронами лазерного света — электроны приспособятся к новой окружающей среде. Здесь может произойти нечто, достойное весьма пристального рассмотрения. Возможно, что новая волна между зеркалами окажется больше похожа на «предпочитаемую» электронами волну, чем на ту, которой электроны подчинялись и которую поддерживали до сего момента. В этом случае сначала отдельные электроны спонтанно, в виде флуктуации, отдадут новой волне свою энергию, а вскоре и все остальные электроны поддержат именно эту волну, полностью отказав в поддержке прежней: адаптация к новому «зеркальному окружению» прекратится посредством флуктуации.

В лазере, как и в жидкости, состояние макроскопической упорядоченности может быть достигнуто увеличением количества поступающей энергии. В случае с жидкостью мы повышаем температуру, получая в результате все более и более сложные структурные образования вплоть до возникновения турбулентности; то же и с лазером: при дальнейшем повышении мощности накачки лазер внезапно начинает испускать регулярные невообразимо короткие и интенсивные световые вспышки. Выходная мощность каждой вспышки при этом может быть сопоставима с мощностью всех вместе взятых электростанций США. Длительность же такой вспышки составляет всего триллионную долю секунды. Описанные световые вспышки, называемые также ультракороткими лазерными импульсами, возникают в результате кооперации множества различных волн. Конкуренция между ними прекращается, вытесненная общим мощным усилием. Кроме того, наша теория предсказывает, что лазеры способны генерировать еще один новый тип света — турбулентный свет, что открывает обширную новую область исследования для экспериментальной физики.

Характеристики

Тип файла
Документ
Размер
2,87 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6639
Авторов
на СтудИзбе
293
Средний доход
с одного платного файла
Обучение Подробнее