~1 (732340), страница 6
Текст из файла (страница 6)
Омическое сопротивление проводника.
Сопротивление- физическая величина, зависящая только от вещества и геометрических размеров проводника. R=rl/S, r=RS/l, где r- удельное сопротивление. 1 Ом- сопротивление такого проводника, по которому течет ток в 1 Ампер, если на его концах поддерживается напряжение в 1 Вольт. [R]=[Ом]=[А/В].
Удельное сопротивление.
Удельное сопротивление (r)- физическая величина, численно равная сопротивлению проводника, длина которого 1 м, а площадь сечения 1 м2, при температуре t=20°C. R=rl/S. [r]=[Ом м].
Зависимость удельного сопротивления от температуры.
Опытным путем было установлено, что удельное сопротивление есть функция температуры. r=r0(1+aDt), где r0-удельное сопротивление при t=0°C. a-температурный коэффициент сопротивления, показывающий на сколько меняется удельное сопротивление проводника при его нагревании на 1°C (или на 1 К).
Сверхпроводимость.
Сверхпроводимость- явление исчезновения сопротивления некоторых веществ (металлов, растворов солей) при понижении температуры почти до абсолютного нуля.
Последовательное и параллельное соединение проводников.
Последовательное: Iоб=I1=I2; Uоб=U1+U2; Rоб=R1+R2.
Параллельное: Iоб=I1+I2; Uоб=U1=U2; 1/Rоб=1/R1+1/R2.
Закон Ома для полной цепи.
Сила тока в электрической цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению данной цепи: I=Е/(R+r).
Источники тока, их соединение.
Источники тока- различные устройства, в которых могут возникать сторонние силы. Сторонние силы- силы, отличные от сил электростатического поля и способные перенести свободные электроны от меньшего потенциала к большему. Источники тока создают электрическое поле в проводнике и поддерживают его достаточно длительное время. Последовательное соединение источников: E=nE1. Параллельное соединение: E=E1=E2.
Измерение тока и разности потенциалов в цепи.
Для измерения силы тока применяют амперметр или гальванометр (для измерения малых токов), их подключают в цепь последовательно. Для измерения разности потенциалов (напряжения) применяют вольтметр, его подключают в цепь параллельно.
Работа и мощность тока.
Работа электрического поля заставляет электроны двигаться упорядоченно, то есть в цепи возникает электрический ток. A=qU=IUt. Для последовательно соединенных проводников A=I2Rt, для параллельно соединенных- A=U2t/R. [Дж]=[А В с]. Мощность тока Р=А/t. Для последовательно соединенных проводников мощность тока P=I2R, для параллельно соединенных - P=U2/R. [Вт]=[Дж/с]=[А В].
Закон Джоуля- Ленца.
Согласно закону сохранения энергии, работа электрического поля превращается в тепловую энергию проводника A=Q. Q=А=IUt=I2Rt=U2t/R. Q=I2Rt- закон Джоуля- Ленца (для последовательного соединения проводников); Q=U2t/R- закон Джоуля- Ленца (для параллельного соединения проводников).
Электрический ток в металлах.
Электрический ток- упорядоченное движение свободных электронов. Если внутри металла нет электрического поля, то движение электронов хаотично и в каждый момент скорости различных электронов имеют разную величину и направление. Как только оно появляется, на каждый электрон начинает действовать сила, направленная в сторону, противоположную полю. Двигаясь под действием сил электрического поля, электроны приобретают некоторую кинетическую энергию. При соударениях она частично передается атомам и ионам решетки. Из-за этого происходит более интенсивное выделение тепла. При наличии тока происходит переход энергии упорядоченного движения электронов в энергию хаотического движения атомов, ионов и электронов (то есть во внутреннюю энергию тела). При наличии тока внутренняя энергия тока увеличивается.
Электрический ток в электролитах.
Электролитами являются растворы солей, кислот и щелочей. Заряженные частицы образуются в результате электролитической диссоциации. Молекулы растворяемых веществ распадаются на ионы. В отсутствии внешнего электрического поля все частицы находятся в хаотическом тепловом движении. Если ионы находятся во внешнем поле, то начинается их упорядоченное движение двумя встречными потоками: положительные ионы устремляются к катоду, отрицательные- к аноду. Суммарный ток через раствор складывается из обоих потоков.
Закон электролиза (закон Фарадея).
Электролиз- процесс выделения вещества на электродах и его перехода с одного на другой. Первый закон Фарадея: масса вещества, выделившегося при электролизе, пропорциональна суммарному заряду всех ионов, прошедших через электролит. m=kDq=kIDt, где k- электрохимический эквивалент вещества. Второй закон Фарадея устанавливает связь между химическим и электрохимическим эквивалентами вещества: k=M/FZ, где M- молярная масса вещества, Z- валентность вещества, F- постоянная Фарадея. F=9,65 104 Кл/моль.
Электрический ток в вакууме.
Вакуум- такое состояние газа, когда средняя длина пробега его частиц превышает размеры сосуда. Носителями электронного тока в вакууме являются электроны и другие заряженные частицы. Получить ток в вакуумной трубке не удается с помощью только одной термоэлектронной эмиссии, так как электроны, покидающие катод, не уходят очень далеко и «плавают» в виде электронного облака вблизи него. Чтобы возник электрический ток, надо подключить к цепи, кроме источника питания катода, источник ускоряющего поля между катодом и анодом.
Термоэлектронная эмиссия.
Термоэлектронная эмиссия- явление испускания электронов накаленным металлом. Наиболее быстрые электроны обладают энергией, достаточной для совершения работы выхода, и поэтому могут покинуть металл. Чем сильнее нагрет металл, тем больше «горячих» электронов, которые способны его покинуть.
Электронная лампа- диод.
Диод- лампа, состоящая из анода и катода. Диод состоит из стеклянного или металлического баллона, из которого выкачан воздух. Внутри находится нить, накаливаемая током до температуры, при которой выделяются электроны. Нить окружена металлическим цилиндром, который присоединяется к положительному полюсу и называется анодом. Нить накала называется катодом. Потенциал на аноде должен быть больше, чем на катоде, чтобы ток через диод шел.
Электронно-лучевая трубка.
Электронно-лучевая трубка- вакуумный стеклянный баллон, в узком конце которого помещен источник электронов (электронная пушка). Широкий конец трубки служит экраном. Электронная пушка состоит из накаленного катода, испускающего электроны, управляющего электрода и анода. Катод и управляющий электрод обычно имеют форму цилиндра. Анод представляет собой диск с отверстием, вставленный в металлический цилиндр. Форма и расположение в пушке выбираются так, чтобы наряду с ускорением электронов происходила их фокусировка. Выходя из анода, электронный пучок попадает на экран, покрытый светящимся составом, в результате чего на экране возникает яркая светящаяся точка. На пути к экрану электронный луч проходит между двумя парами металлических пластин.
Полупроводники.
Полупроводники- вещества, которые нельзя отнести ни к проводникам, ни к диэлектрикам.
Собственная и примесная проводимость полупроводников.
Собственный полупроводник- беспримесный и бездефектный полупроводник с идеальной кристаллической решеткой. Собственная проводимость- проводимость собственного полупроводника, обусловленная парными носителями теплового происхождения. Примесная проводимость- проводимость, обусловленная наличием примесных атомов.
Зависимость проводимости полупроводников от температуры.
При температуре 0 К в собственном полупроводнике нет свободных электронов, и он является идеальным диэлектриком. По мере нагрева он приобретает дополнительную энергию, которая вызывает колебательное движение узловых атомов решетки.
p-n переход и его свойства.
p-n переход- область объемных зарядов, прилегающая к поверхности контакта p и n слоев.контакт двух полупроводников с разным типом проводимости. Комбинация двух типов проводниковых слоев обладает свойством пропускать ток в одном направлении лучше, чем в другом (прямой и обратный ток, прямое и обратное напряжение).
Полупроводниковый диод.
Полупроводниковый диод- прибор, в котором используется один p-n переход. Бывает точечным и плоскостным. Диод- представитель нелинейных проводников.
Транзистор.
Транзистор- полупроводниковый прибор, в котором использовано два p-n перехода. Бывает точечным и плоскостным. Их можно использовать для усиления электрических сигналов.
Термистор и фоторезистор.
Термистор- полупроводниковый прибор, включающийся в цепь, управляющую подачей тока, в случаях если недопустимо значительное повышение температуры. Фоторезистор- полупроводниковый прибор, который под действием света измеряет свое сопротивление. Причем материалы подобраны так, что под действием света способны освободить больше электронов.
Электрический ток в газах.
В обычном состоянии газы не проводят электрический ток, так как в газе нет свободных заряженных частиц. Чтобы газ стал проводящим, в нем создают заряженные частицы. Заряд ионов газа бывает маленьким, а масса- большая, Þ законы Фарадея не выполняются, закон Ома не выполняется при протекании тока по газу.
Самостоятельный и несамостоятельный разряды.
Если постепенно увеличивать напряжение на электродах, то сила тока вначале растет до определенного момента, а затем ток остается постоянным. Такой ток называется током насыщения. На этом участке существует несамостоятельный разряд (так как при отключении ионизатора ток прекращается). Но начиная с некоторого напряжения сила тока снова начинает расти, в газе появляются сильно выраженные световые и тепловые эффекты. Ионы создаются самим разрядом, который уже будет самостоятельным.
Понятие о плазме.
Плазма- ионизированный газ, который образуется при электрических разрядах в газах при нагреве газа до температуры, достаточно высокой для протекания интенсивной термической ионизации. Плазма обладает высокой электрической проводимостью.
3.3.Магнетим.
Магнитное поле.
Магнитное поле- неразрывно связанная с током материальная среда, через которую осуществляется взаимодействие на расстоянии проводников с током. Магнитное поле обладает энергией, которая непрерывно распределена в пространстве. Магнитное поле создается либо движущимися электрическими зарядами, либо переменным электрическим полем и действует только на движущиеся заряды. Магнитные поля токов одинакового направления усиливают друг друга, а токов противоположного направления ослабляют друг друга.
Действие магнитного поля на рамку с током.
Магнитное поле оказывает ориентирующее действие на рамку с током. В качестве направления мы выбираем направление нормали рамки с током, свободно установленной в поле. Направление вектора В определяется правилом правого винта.
Индукция магнитного поля (магнитная индукция).
Магнитная индукция- вектор, величина его равна отношению силы F , приходящейся на единичный элемент тока (силовая характеристика поля в данной его точке). Она не зависит от вносимого в данную точку поля элемента тока. B=F/I2Dl. 1 Тесла- такая магнитная индукция, которая возникает при действии на единичный элемент тока силой в 1 Ньютон. Направление магнитной индукции совпадает по направлению с силой, действующий на проводник.
Линии магнитной индукции.
Линия магнитной индукции- такая линия, касательная в каждой точке к которой совпадает по направлению с вектором магнитной индукции в данной точке. Линии магнитной индукции не имеют начала и конца. 1 Тесла- индукция магнитного поля, которая действует на отрезок проводника длиной 1 м при силе тока в 1 А силой, равной 1 Н.
Картины магнитного поля прямого тока и соленоида.
Магнитное поле прямого тока существует в каждой точке пространства, оно уменьшается по мере удаления от проводника. Соленоид- катушка с большим количеством витков. Магнитное поле соленоида существует только внутри его.
Сила, действующая на проводник с током в магнитном поле.
На проводник с током, находящийся в магнитном поле, действует магнитная сила F. Направление этой силы можно определить по правилу левой руки. F- большой палец, I- другие пальцы, B- входит в ладонь. Сила Ампера- сила, действующая на прямолинейный проводник с током в магнитном поле. Эта сила прямо пропорциональна длине проводника, величине тока в нем и зависит от синуса угла между направлениями тока и магнитных силовых линий. F=IBlsina- закон Ампера. При этом происходит превращение электрической энергии в механическую.
Закон Ампера.
F=IBlsina- закон Ампера. Сила, действующая на прямолинейный проводник, равна произведению силы тока на проводнике, длине проводника, магнитной индукции и синуса угла между направлениями отрезка проводника и вектора магнитной индукции.
Действие магнитного поля на движущийся заряд. Сила Лоренца.
Магнитная сила действует не на сам проводник, а на движущиеся в нем заряды. Так как они не могут выйти из проводника, то сила оказывается приложенной к проводнику. Сила Лоренца всегда перпендикулярна плоскости, проходящей через векторы индукции поля и скорости заряда. Ее направление для положительного заряда определяется правилом левой руки. На отрицательный заряд, движущийся в том же направлении, эта сила действует в обратную сторону. Сила Лоренца всегда центростремительна.
Магнитные свойства вещества.
Вещества бывают парамагнитными, ферромагнитные и диамагнитные. Парамагнитные- вещества, магнитная проницаемость которых немного больше, чем у вакуума. Попадая в магнитное поле, они немного усиливают его у конца стержня за счет своего магнетизма, и ослабляют его рядом со стержнем. Ферромагнитные- вещества, магнитная проницаемость которых во много раз больше, чем у вакуума. Попадая в магнитное поле, они намагничиваются и значительно усиливают его за счет своего магнетизма у полюсов. Диамагнитные- вещества, магнитная проницаемость которых меньше, чем у вакуума. Они ослабляют у концов магнитное поле, в которое попали. Магнитное поле внутри диамагнитного вещества меньше, чем снаружи.
Гипотеза Ампера.
Элементарный магнит- круговой ток, циркулирующий внутри небольшой частицы вещества: атома, молекулы или их группы.
Ферромагнетики.
Ферромагнетики- вещества, магнитная проницаемость которых во много раз больше, чем у вакуума. Их применяют для получения сильного магнитного поля. Попадая в магнитное поле, они намагничиваются и значительно усиливают его за счет своего магнетизма у полюсов. В их атомах есть электроны, которые, двигаясь по орбитам вокруг ядер, совершают вращение вокруг своей оси. Магнитные поля таких электронов очень сильные и так расположены в пространстве, что при наложении усиливают друг друга. Внешнее магнитное поле у полюсов ферромагнетиков велико, так как велико и внутреннее.