OPTC_5 (732334)
Текст из файла
Л екция 5 31
Лекция 5
4.4. Эллиптическое зеркало.
Уточненная формулировка принципа Ферма
A B
Мы рассматривали отражение от плоского зеркала, тогда путь распространения был минимальным. В случае эллиптического зеркала все пути распространения света одинаковы. Как и в случае плоского зеркала, отраженная волна представляет собой результат излучения колеблющихся электронов, колебания которых вызвала падающая волна Будем считать, что источник волн, излучатель находится в точке A. Но теперь вызванные движением разных электронов электромагнитные колебания в точке B будут происходить с одинаковыми фазами. Векторная диаграмма будет выглядеть иначе - отдельные векторы не будут повернуты один по отношению к другому, будут лежать на одной прямой.
A B
С
Естественно, при таком отражении для каждого луча также будет справедлив закон отражения.Если кривизна зеркала в точке отражения будет больше кривизны эллиптического зеркала, длина пути распространения (длина ломаной ACB) будет не минимальной, а максимальной. Но отражение в точке C будет происходить так же, как от эллиптического зеркала. Это вынуждает нас уточнить формулировку принципа Ферма: для пути распространения света определяющей оказывается не минимальность, а экстремальность этого пути. Или же длина пути не должна изменяться при смещении точки отражения.
В этой связи можно провести такие более доказательные рассуждения.
B”
A B
С B’
Луч CB проходит также через точки B’ и B”. И если длины разных лучей, приходящих из точки A в точку B одинаковы, такого утверждения нельзя сделать для точек B’ и B”. Соответственно, и векторные диаграммы для сложения колебаний от отдельных электронов в этих точках будут выглядеть иначе - эти векторы не будут выстраиваться по одной прямой, станут скручиваться в “клубки”. Попробуйте самостоятельно разобраться, какая из приведенных на рисунке диаграмм относится к точке B’, а какая к точке B”.
4.5. Сферическое зеркало
A B
R
C F
2q R/2
D O
Свойством сферического зеркала является то, что после отражения от него лучи собираются в некоторой точке, называемой фокусом зеркала.
После отражения луч пересечет оптическую ось в некоторой точке F. При малых q будут справедливы выражения:
из которых следует, что фокусное расстояние зеркала OF равно половине радиуса.
Собственно, мы решили задачу о сферическом зеркале. Но более важной задачей для нас является детальное знакомство с процессами излучения, распространения волн. Поэтому поговорим о процесс фокусировки подробнее.
Y
d
При малых значениях q будет:
C
R
a q
O
Применим это выражение к случаю отражения плоской волны от сферического зеркала. Обозначим на этот раз угол падения через a и вместо дифференцирования по y нам нужно будет провести дифференцирование фазы по расстоянию x(a) от точки O.
Теперь мы можем найти зависимость угла направления излучения (по отношению к нормали, радиусу) от угла a:
Мы не получили нового результата. Как и должно быть, в чем мы убедились еще раз, угол отражения q равен углу падения a. Но для нас важно, что этот результат для отражения от сферического зеркала может быть получен и с помощью анализа зависимости фазы колебаний электронов, излучающих вторичную, отраженную волну, от x - расстояния от точки падения луча до оптической оси OC.
4.6. Параболическое зеркало
При отражении от сферического зеркала происходит фокусировка только параксиальных лучей. Попробуем теперь найти такое сечение зеркала, чтобы в его фокусе собирались все лучи независимо от расстояния до оптической оси.
У
F
f
y
x 0 X
Для определения вида сечения зеркала воспользуемся принципов ферма.Пусть соответствующая кривая описывается функцией y(x), координаты точки падения x и y. Обозначим буквой F фокус зеркала, его координата (фокусное расстояние) - f.
От точки падения луч пройдет до фокуса расстояние
Чтобы у всех параллельных лучей была одинаковая длина пути, необходимо чтобы выполнялось условие
после пересечения с горизонтальной пунктирной линии до фокуса совпадающий с оптической осью луч пройдет сначала путь y до точки отражения и затем - f в обратном направлении. Этот путь должен быть равен L, Только в этом случае все лучи соберутся в фокусе зеркала.
Таким образом, мы получаем:
Это парабола и, значит, необходимым нам свойством обладает параболическое зеркало.
4.7. Закон преломления света
4.7.1. Скорость света в веществе
Мы с Вами убедились в свое время, что из уравнений Максвелла следует волновое уравнение. Электромагнитные волны с длиной волны примерно в пределах 0,4 ¸ 0,7 мкм, воспринимаемые глазом, называют светом. И среди множества веществ есть такие, в которых свет может распространяться без заметного уменьшения амплитуды электромагнитных колебаний, прозрачные вещества. Однако, скорость света в веществе отличается от скорости света в вакууме, выражение для которой мы в свое время получили. Повторим теперь проведенные ранее преобразования уравнений Максвелла, но теперь не для вакуума, а для некоторого вещества.
Выпишем уравнения Максвелла для случая отсутствия свободных зарядов и токов проводимости:
Мы будем также использовать выражения
считая вещество однородным.
Как и раньше, ограничимся случаем плоской волны, когда электрическое и магнитное поля зависят от одной координаты - от координаты x, т.е. в последующих выражения из производных по координатам отличны от нуля только производные по x:
Как видно из этого уравнения, . Это означает, что x - составляющая магнитного поля не зависит от времени. Положим ее равной нулю, поскольку стационарное поле (магнитное как и электрическое) к распространению волны отношения не имеет.
Далее, вектор имеет некоторое направление, и если мы вдоль этого направления направим ось 0Z, то будет
и, следовательно,
(см. уравнение). Таким образом,
Аналогично получим
(поскольку ) и
Продифференцируем уравнение (*) по координате x, а уравнение (**) по времени:
Тогда
Мы получили волновое уравнение, и скорость распространения света в веществе . При распространении световой волны с большой степенью точности можно считать m = 1, и скорость света в веществе
. Таким образом, для нахождения значения скорости v необходимо знать значение диэлектрической проницаемости e.
Заметим, что на больших частотах, характерных для световой волны, значение e существенно отличается от стационарного, которое входит в уравнения электростатики, и - зависит от частоты. Соответственно, от частоты зависит и (фазовая) скорость распространения световой волны в веществе. В таком случае говорят, что вещество обладает дисперсией.
Самым существенным, что происходит при взаимодействии поля с веществом, это “подвижка” электронов, поляризация молекул. При этом поляризованность оказывается пропорциональной полю, что свидетельствует о квазиупругом характере действующих на электрон “возвращающих” сил. Поэтому при взаимодействии электронов со световой волной будет:
Этому уравнению удовлетворяет решение вида . Подставив x в уравнение, получим:
Итак, при смешении под действием электрического поля волны на электрон образуется диполь с моментом p = ex. Обозначив через N концентрацию электронов, мы получим такие выражения для поляризованности , для поляризуемости вещества k и диэлектрической проницаемости e:
В зависимости от соотношения между w и w0 и от величины N величина e больше или меньше единицы и даже отрицательной. Соответственно мы должны сказать, что скорость света в веществе
будет либо меньше скорости света в вакууме, либо больше ее, либо мнимой. Эти возможности нам нужно будет обсудить более подробно. А пока сделаем одно уточнение.
В каком-то конкретном веществе входящие в атомы электроны могут иметь различные частоты свободных колебаний w0k, разными могут быть и их концентрации Nk. Все они будут вносить свой вклад в поляризованность вещества и, соответственно, в величину e. поэтому в более общем случае выражение для скорости волны запишется в виде
Таким получается выражение для фазовой скорости волны в веществе.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.