240-1213 (732328), страница 3

Файл №732328 240-1213 (Физика (Шпаргалка)) 3 страница240-1213 (732328) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

[b]=м2/(Вс)

1) j=en(b++b_ )E - зак. Ома.

Произведение равновесной концентрации на элементар. заряд носителей тока на сумму подвижностей и на напр. эл. поля.

2) j=E

=en(b++b_ ) =1/

 - удельная проводимость

3) jн=enid

d - расст. между электродами.

ni - мощность ионизатора.

Ударная ионизация.

Самостоятельный газовый разряд.

При больших напр. поля свобод. электроны ускоряются до таких энергий которых достаточно для электронным ударом.

В обл. 4 в нутри газа появл. собственный источник ионизации , ударной ионизации.

Число электронов резко возрастает.

Лавинообразный процесс.

В обл. 4 наличие внеш. ионизации необходимо для поддеожания заряда.

При дальнейшем увеличении напр. поля в обл. 5 энергию достаточную дляионизации получают ионы.

В обл. 5 разряд становится самостоятельным. при этом сила тока увелич. Практически без изменения Е.

Напряженность при котор. происпереход из несомост. В самост. разряд. разряд назв. напряжением зажигания или пробоя.

Типы самостоятельных газовых разрядов.

1) тлеющий

2) искровой

3) дуговой

4) коронный

(в Трафимовой)

Зак. Джоуля - Ленца в интегральной и диффер. форме.

На внеш. сопротивлении в любой электрической цепи выделяется кол - во теплоты.

1) Q=I2Rt

За время t при протекании силы тока при протекании силы тока в нем выделится кол-во теплоты Q. (интегральная форма)

Получим зак. в диффер. форме.

Для этого рассм. внутри проводника с сопр. R элементарный объем dV=dSd

dR= d/dS

Запишем вместо 1) кол-во теплоты выдел. в этом объеме за время dt.

2) dQ=j(dS)2(d/dS)dt

(dQ/dVdt)=j2

3)т=j2 j=E

т =2E2=(1/)2E2

3) т =E2

Работа и мощьность тока, КПД тока.

=А*/q A=q=It

полная мощность источника тока P=A*/t=I

P=I( IR­+Ir)=I2R+I2r

P=Pполез+Pбезполезн

=Pполез/P

Основные положения КЭТ.

1) При кристаллизации металлов из расплава атомы их теряют электроны. При этом возникают полож. заряж. ионы и свободные электроны. Если кажд. атом теряет по эл-ну, то nат=nэл=(D/)·Na. Своб. эл-ны способны перемещаться по всему объёму металла.

2) Все металлы имеют кристаллич. структуру, в основе которой лежит кристаллич. решётка кубич. формы с положит. ионами в узлах. Таким образом решётка прозрач. для эл-нов.

3) Своб. эл-ны, оторванные от атомов, становятся коллективной собственностью всего металла. Они соверш. хаотич. тепл. движение. При этом эл-ны ведут себя подобно одноатомным мол-лам идеал. газа, подчиняясь статистике Максвелла. Своб. эл-ны принято назыв. “электронным газом”. Для эл-нов по ф-ле, известной из МКТ можно определить сред. скор. теплового движения:

Vт=(8KT)/(m)105м/c. 4) Своб. эл-ны, сталкиваясь с ионами, расположенными в узлах решётки, отдают им свою кинет. энергию. Этим обусловлено сопротивление проводников.

5) При приложении внешн. эл. поля напряжённостью E на хаотич. тепл. движение эл-нов накладывается упорядоченное движение. При этом возникает эл. ток. V « VT

Оценим V по ф-ле j=qэлnV=enV

V=j/(en); n~1029м-3, j(Cu)=107А/м2

V~10-3м/с. Суммарн. скор.VVVT

Поскольку V « VT, то VVT

Закон Ома в КЭТ

Основные положения КЭТ позволяют вывести ф-лу закона Ома как ф-цию параметров носителей тока. Для вывода используем соотношение j=enV. Пусть к проводнику приложено внешнее поле E. Своб. эл-ны придут в движение. На эл-ны будет действ. сила со стороны поля F=eE.E=consta=const.

F=eE=ma (по II з-ну Ньют.). a=(eE)/m

Для равноуск. движ. Vt=V0+at

ср. длина своб. пробега l~d расст. между ионами; -время своб. пробега.

Скорость электрона

V=Vmax=a - до столкновения с ионом

V0=0 - после столкновения с ионом

V(V0+Vmax)/2=Vmax/2=(a/2=(eE/2m;

lVlV;

VeE)/2m] · lV;

j=enV=[(e2nE)/2m]·lVз-н Ома в КЭТ

j=E ne2l) / (2mV)

Закон Джоуля-Ленца в КЭТ

Нагревание проводника, согласно КЭТ, объясняется столкновением электронов с ионами кристал. решётки. Рассчитаем кинет. энергию отдельного эл-наперед столкновением с ионом, полученную им за счёт поля: W1=(mV2max)/2.

За 1 сек. эл-н может испытывать Z соударений, где Z = 1/=V l. Если в 1 м3 число эл-нов = n, то кинет. энергия, переданная решётке всеми n эл-нами за Z столкновений каждого из них W=nZW1=T.

T=[(mV2max)/2]·n·Z=[ne2l/2mV]E2

Затруднения КЭТ

1) Температурная зависимость проводников. Согласно экспер. данным сопр. металлов увелич. с температурой по з-ну R=R0+T, где R0-сопр. при T=273K, град-1. Для ф-ла аналогична +T. Согл. опыта ~T. =2mVTl~VT. На осн. КЭТ след. T, т.е. теория расходится с опытом.

2) Теплоёмкость металлов и диэлектриков. Согл. опвтов атомная теплоёмк. металлов и диэл-ков одинакова (C=3R, где R-газовая постоянная). Это положение наз. з-н Дюлонга и Пти. Согл. КЭТ металл сост. из кристал. решётки и своб. эл-нов, а диэлектрик своб. эл-нов не имеет. Следует ожидать, что теплоёмк. металлов=т.ё. кристал. решётки+т.ё. своб. эл-нов (Cмет=R+3/2R=4,5R), чего нет на опыте.

Электронный газ, на самом деле подчиняется не классической статистике Максвелла, а квантовой статистике. Затруднения устраняются в квантовой теории проводимости. Несмотря на затруднения, КЭТ она проста и широко применяется при высоких темп-рах и малых концентрациях.

Электромагнетизм

Магн. поле. Движ. заряды в окруж. пространстве создают магн. поле, которое явл. одной из форм сущ. материи. В отличие от эл. статического поля, магнитное действует только на движ. заряды. Проводники с текущими по ним токами в окруж. пр-ве создают магн. поле. Принято различать макро- и микротоки. Макротоки-это токи, текущие по проводникам. В любом вещ-ве электроны движутся по круговым орбитам. Движение эл-нов в атоме по круговым орбитам тоже приводит к созданию магн. поля. Токи, создаваемые в веществах движущимися эл-нами называют микротоками.

Гипотеза Ампера: в каждом вещ-ве за счёт движения электронов возникают микротоки.

Для исслед. магн. поля применяют магн. стрелки (опыт Эстерда). Магн. стрелка предст. собой магнит, одетый на остриё. При пропускании тока через проводник стрелка испытывает силовое воздействие (устанавливается перпенд. проводнику). 2й метод исслед. маг. поля - с помощью плоского контура с током. Форма контура не играет роли.

Необходимо, чтобы размер контура был настолько мал, чтобы не искажал исследуемое поле. Контуры, вносимые в магн. поле испытывают ориентирующее действие со стороны этого поля. Рамки принято характеризовать положит. нормалью. Положительной наз. нормаль, проведённую к центру проводника, удовлетворяющего правилу правого винта по напр. тока. На основании действия сил на рамку делают вывод: магнитное поле - силовое и его надо характеризовать опред. направлением. За напр. магн. поля принимают напр. полож. нормали в данном месте распол. контура с током.

Определение характеристик маг. поля связано с определением поведения контура с током в поле. В однор. поле внесён контур тока таким образом, чтобы вдоль линий поля была направлена плоскость.

Пара сил создаёт вращающий момент M. Опыт показывает, что вращ. момент зависит от некот. силовой хар-ки поля и от силы тока в рамке (M~B; |M|~|I|). Для всех рамок вводится хар-ка, связанная с размерами расок и силой тока, текущей в них. Pm - магнитный момент. Pm=I·S [А·м2]. Магн. момент явл. вектором. Pm=n·I·S, где n - орт полож. нормали, т.е. Pm || n. Опыт показ., что M=[Pm , B] - механический вращ. момент равен векторному произведению магнитного момента рамки на вектор индукции магн. поля. M=Pm·B·sin (=Pm^B). Из этой ф-лы видно, что M=max, если =90° (положение I на рис.) Mmax=Pm·B(1). M=0 при =0 (полож II). Полож. II соответствует устойчивому равновесию рамки.

Индукция магн. поля - основная силовая хар-ка этого поля. Согл. ф-лы (1) B=Mmax / Pm. Индукцией магн. поля в данной точке наз. физическая величина, численно равная макс. вращающему моменту, действующ. в данной точке на рамку с током, имеющую единичный магн. момент. [B]=Н/(А·м)=Тл (Тесла). Ин-ция магн. поля предст. собой хар-ку результирующего поля, созданного макро- и микротоками. Индукцию можно изобразить силовыми линиями (аналог напряжён. эл. стат. поля).

Напряжённость магн. поля

Использ. вектор B не всегда удобно, поскольку проявл. зависимость от свойств Среды. Вводится вспомогат. хар-ка, не завис. от свойств Среды - напряжённость магнитного поля H (аналог D в эл. статике). B=H, где -магн. проницаемость. Для вакуума =1. -магнитная постоянная. =4·107 Гн/м. [H]=А/м. Для вакуума H=B/. За ед. (А/м) напряж. магн. поля принимают напряж. такого поля, у которого индукция B=4·107Тл. H определяется только макротоками и не завис. от микротоков. Поскольку H - это вектор, для него принято строить линии напряжённости.

Вихревой характер маг. поля. В отличие от эл. стат. поля, маг. поле является вихревым: линии магн. поля всегда замкнуты, представляют собой окружности (вихри), охватывающие проводники с током.

Магн. поле не явл. потенциальным. Линии поля B строят согласно правилу правого винта. Векторы B и H направлены по касательной в каждой точке линий.

Принцип суперпозиции

магнитных полей

Если в пр-ве имеется неск. проводников с токами, то в каждой точке пр-ва магн. поле создаётся каждым из проводников в отдельности независ. от наличия остальных. Результир. поле в этой точке характеризуется векторами B и H. Bi и Hi - векторы, порождаемые i-ым проводникомс током.

B=Bi; H=Hi;

Закон Био-Савара-Лапласа

Осн. задача магнитостатики состоит в умении рассчит. хар-ки полей. Закон Б-С-Л с использованием принципа суперпозиции даёт простейший метод расчёта полей.

dB-индукция, созд. в точ. A.

dB=(·(I·dl·sin/r2) [1]

dH=(I·dl·sin/(4r2) [2]

Индукция магн. поля, созданная элементом проводника dl с током I в точке A на расстоянии r от dl пропорц. силе тока, dl, синусу угла между r и dl и обр. пропорцион. квадрату расстояния r.

___ ____ __

dB=(·(I·[dl,r] /r3)

Значение з-на Б-С-Л заключается в том, что зная dH и dB от dl можно вычислить H и B проводника конеч. размеров разл. форм.

Применение з-на Б-С-Л

Поле прямого отрезка конечной длины с током.

·Гн/м, H?, B?

dH=I·dl·sinr2

По правилу прав. винта найдём направл. dH

____ ____

H=dH. Поскольку все dH напр. одинаково, можно записать H=dH. Переменной интегрирования выби-раем угол .

rd/dl=sin dl=rdl/sin.

dH=I·r·d·sin/sin·4r2=

=I·d/4r

из треуг. DOA b/r=sin

r=b/sin.

dH=I·sind/4b



H=I·sind/4b=



 

=I/4b sind=bcos|

 

4b(coscos) (2)

4b(coscos) (2’)

Поле прямого бескон. тока.

Для беск. тока 

Характеристики

Тип файла
Документ
Размер
226,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6906
Авторов
на СтудИзбе
267
Средний доход
с одного платного файла
Обучение Подробнее