PHYS3 (732313), страница 2
Текст из файла (страница 2)
В случаях,когда всё-таки удобно или необходимо рассматривать механическую систему в неинерциальной сис.отсчёта ,нужно поэтому иметь какое-то исходное
основное механическое уравнение вместо уравненя второго закона Ньютона.
Такое уравнение можно,разумеется,получить специальным математическим персчётом из уравнения второго закона Ньютона,составленного для какой-нибудь инерциальной системы отсчёта,в данную удобную неинерциальную систему.
Результаты пересчета представляют, однако, снова в форме уравнения второго закона Ньютона, который теперь записывается следующим образом:
, где Fин. обозначают возникающие при пересчете дополнительные математические члены , которые называют силами инерции. Это название, однако, не должно вводить нас в заблуждение: силы инерции никоим образом не являются настоящими физическими силами, так как нельзя указать никакого реального тела, или тел, действиями которых обусловлены указанные "мифические" силы. Они целиком определяются механическими свойствами рассматриваемой конкретной неинерциальной системы отсчета, характером ее движения.
К силам инерции относятся, в частности, так называемые центробежные силы и силы Кориолиса.
Пример 1. Определим силу F , стремящуюся растянуть, а потом и разорвать круговой обруч радиуса R массы M , равномерно вращающийся вокруг своей оси с угловой скоростью .
,
где k- масса в расчете на единицу длины обруча, или линейная плотность массы, т.е. k=M/2R .
или
и окончательно получаем
Рассмотрение снова удобно вести в неинерциальной системе отсчета, жестко связанной с сосудом с жидкостью, в которой жидкость покоится. Эта неинерциальная система равномерно ускоренно движется вниз вдоль наклонной плоскости с ускорением a=g sin .
Таким образом, на каждую малуюжидкую частицу массы m в этой инер циальной системе действует не только сила тяжести F=mg , направленная вертикально вниз, но и сила инерции Fин.=ma , направленная в противоположную сторону движения, т.е. вверх вдоль наклонной плоскости.
Жидкость в прямоугольном сосуде как бы находится в однородном поле новых сил тяжести, имеющих ускорение g’ , которое составляет некоторый угол с вертикалью. Следовательно, свободная поверхность жидкости в скатывающемся сосуде, перпендикулярная направлению нового ускорения g’ , будет составлять такой же угол с горизонтальной плоскостью. Найдем угол . Имеем косоугольный треугольник
Применим к нему теорему синусов
,
,
sin (1-sin2)=cos sin cos sincoscossintgtg
Следовательно, искомый угол равен углу , т.е. свободная по верхность жидкости в скатывающемся по наклонной плоскости сосуде будет параллельна наклонной плоскости.
4.4. Астрономические и земные измерения скорости света
Впервые скорость света была измерена в конце XVII в. в 1675 г. датским астрономом О.Ремером (1644-1710), который смог найти ее значение из наблюдений за спутниками Юпитера - четырьмя "медичейскими звездами", открытыми Галилеем в 1610 г. В настоящее время открыто 11 спутников Юпитера.
Орбита Юпитера, как и других планет, лежит приблизительно в плоскости орбиты Земли - в плоскости эклиптики; все планеты вращаются в одну сторону.
На рисунке L обозначает расстояние между Землей и спутником Юпитера в тот момент, когда он входит в тень Юпитера. Момент затмения наблюдается на Земле с запаздыванием, равным t=L/c , где c - скорость распространения света в межзвездной среде - эфире. Очевидно время запаздывания минимально или максимально, когда расстояние между Юпитером и Землей, соответственно, минимально или максимально.
Рассмотрим сначала наблюдаемый с Земли интервал времени T между двумя последовательными затмениями спутника, т.е. период обращения спутника вокруг Юпитера. Обозначим через T0 истинный интервал времени между двумя последовательными затмениями, или истинный период обращения спутника вокруг Юпитера.
Рассмотрим, например, для определенности случай, когда Земля движется по направлению к Юпитеру со скоростью v. Тогда первое затмение спутника мы зафиксируем на Земле с запаздыванием, равным l/c , где l - расстояние от Земли до Юпитера в момент первого затмения, c - скорость света. Второе затмение спутника мы зафиксируем на Земле немного с другим запаздыванием, равным (l-l)/c , где l - расстояние, пройденное Землей к Юпитеру за время T0 , прошедшее между двумя последовательными затмениями. Таким образом, отличие наблюдаемого периода T между двумя затмениями и истинного периода T-0 между ними равно
; но очевидно
, а потому
, т.е. наблюдаемый с Земли период обращения T оказывается меньше истинного периода T0 .
Если теперь Земля удаляется от Юпитера со скоростью v , то отличие наблюдаемого периода T обращение спутника от истинного периода T0 будет равно
, т.е. наблюдаемый с Земли период обращения спутника T окажется больше истинного периода T0.
Предположим теперь, что мы будем наблюдать затмения спутника Юпитера в течение полугода, когда Земля перемещается из точки A в точку C.
Если наблюдать два последовательных затмения с Земли, находящейся в некоторой промежуточной точке M на своей орбите, то очевидно
где - угол ASM , который равен =2t/T3 , где t- время, протекающее с момента, когда Земля находилась в точке A своей орбиты, T3 - период обращения Земли вокруг своей орбиты. В течение полугода, когда Земля перемещается вдоль пути ABC, изменение периода варьируется от T=0 в точке A до максимального значения T=T0v/c в точке B и вновь до значения T=0 в точке C .
















