149771 (732214)

Файл №732214 149771 (Сплавы магнитных переходных металлов)149771 (732214)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Сплавы магнитных переходных металлов

В последние годы интенсивно изучали электронную структуру и разнообразие физических свойств сплавов переходных металлов. Для изучения магнитных свойств сплавов переходных металлов очень полезным оказался метод рассеяния медленных нейтронов. Исследование упругого и неупругого рассеяния медленных нейтронов в сплавах позволяет получить уникальную информацию о магнитных моментах и форм-факторах, а также об изменении спин-волновой жесткости.

Небходимо отметить, что нейтронные исследования распределения магнитного момента в магнитных сплавах и изменение спин-волновой жесткости во многом стимулировали развитие современных методов расчета электронной структуры неупорядоченных сплавов, которые чрезвычайно полезны для решения многих задач физики твердого тела. К ним относят широко теперь известный метод когерентного потенциала [160].

Модель Хаббарда окозалась очень полезной для описания многих электронных и магнитных свойств сплавов переходных металлов и успешно применяется в большом количестве работ. При описании неупорядоченных сплавов с помощью модели Хаббарда вводятся случайные параметры, поэтому говорят о модели Хаббарда со случайными параметрами.

Перейдем к ее описанию. Предполагается, что взаимодействие электронов в бинарном неупорядоченном сплаве из двух магнитных компонент описывается следующим модельным гамильтонианом:

(69)

Здесь, как и в (11), , - операторы уничтожения и рождения электронов Ванье в узле i со спином . Считается, что интегралы перескока одинаковы для обоих сортов атомов А и В, т.е. ; зонная структура чистых компонент А и В в отсутствие кулоновского взаимодействия одинаковая. Величины и - одночастичный потенциал и внутриатомное кулоновское взаимодействие соответственно:

(70)

Для неупорядоченного сплава величины и принимают случайные значения в зависимости от того, заполнен ли узел атомом А или В.

Гамильтониан (69) исследовали многие авторы в различных предельных случаях. Если предположим, что какая-либо из компонент сплава (например, В) состоит из немагнитных атомов, то можно положить параметр . Этот случай соответствует модели Вольфа [161, 162]. Если положим в (69), получим модельный гамильтониан, который рядом авторов [163, 164] был использован для теоретического описания сплава Pd-Ni. Случай, когда , рассмотрен Лютером и Фульде [165] для анализа рассеяния парамагнонов на примесях; Ямада и Шимицу [166] рассчитали спин-волновой спектр. Мория {167] детально исследовал электронную структуру вблизи магнитной примеси ( ) в немагнитной матрице ( ) и рассчитал целый ряд физических характеристик примесной системы. Взаимодействие между примесями было рассмотрено в [168]. Все упомянутые работы [161-168] ограничены приближением сильно разбавленного сплава.

Метод когерентного потенциала [160] позволяет рассматривать сплав с конечной концентрацией примесей. Можно выделить два направления работ, использующих метод когерентного потенциала для описания неупорядоченных сплавов.

Начало первому направлению положила работа [169]. В ней была дана теоретическая интерпретация зависимости от концентрации средней намагниченности, атомных моментов компонент и электронной теплоемкости для сплава NicFe1-c. К этому направлению примыкают работы [170-174].

Подход Хасегава и Канамори (ХК) основан на использовании приближения Хартри-Фока для описания внутриатомной кулоновской корреляции. В этом случае гамильтониан (69) записывался в следующем виде [169]:

(71)

где

(71а)

таким образом, неупорядоченность, описываемая в рамках приближения когерентного потенциала, характеризуется двумя параметрами и . Средние числа заполнения в (71а), которые различаются для разных компонент сплава ( или , iA, или В), должно определяться самосогласованным образом. Последнее обстоятельство приводит к тому, что не каждая элементарная ячейка является электрононейтральной и может иметь место перенос конечного заряда.

Для одночастичного гамильтониана (71) применима стандартная схема метода когерентного потенциала, которую здесь опишем, следуя обозначениям работы [160]. В методе когерентного потенциала (СРА) рассматривается одноэлектронный гамильтониан следующего вида:

(72)

Здесь W – периодическая часть; D – сумма случайных вкладов, каждый из которых связан с одним узлом. Одноэлектронные свойства сплава вычисляются как средние по ансамблю по всем возможным конфигурациям атомов в решетке. Обычно рассматривают усредненную подобным образом одноэлектронную функцию Грина G(z):

(73)

Определим Т-матрицу для данной конфигурации сплава с помощью уравнения

(74)

Тогда функциональное уравнение для определения неизвестного оператора  будет задаваться условием

(75)

Уравнение (75) является самосогласованным определением оператора .

Полагая, что

(76)

можно ввести локальный оператор рассеяния

(77)

С помощью оператора Tn эффективная среда, характеризуемая оператором , заменяется рассеянием на реальном атоме в данном узле n. В методе когерентного потенциала общее условие самосогласования (75) заменяется его одноузельным приближением

(78)

таким образом, при этом подходе примесь считается находящейся в эффективной среде, функция Грина которой подбирается так, чтобы Т-матрица рассеяния на примеси в среднем была равна нулю. При этом будем пренебрегать рассеянием парами атомов и более крупными кластерами. Метод когерентного потенциала точен в атомном пределе, когда перескоки электронов с узла на узел очень маловероятны. Сравнение приближений виртуального кристалла, средней Т-матрицы и когерентного потенциала, проведенное в [175], показало, что метод когерентного потенциала не хуже аппроксимации виртуального кристалла.

В методе когерентного потенциала усредненная функция Грина неупорядоченной системы получается из функции Грина для идеальной решетки заменой энергии на комплексную величину. Аналитические свойства величин, вычисляемых в одноузельном приближении когерентного потенциала, нетривиальны; функция Грина аналитична всюду, кроме линий разрезов, соответствующих примесной зоне и зоне основного кристалла.

Существенно, что в методе когерентного потенциала эффект рассеяния электронов вследствие неупорядоченности описывается комплексной величиной, а именно когерентным потенциалом. С точки зрения квантовой механики в этом нет ничего необычного. Напомним, что при многократном рассеянии волны на произвольном ансамбле рассеивателей вводится усредненная по ансамблю волновая функция, а потенциал в уравнении Шредингера становится комплексным [176]. Мнимая часть потенциала описывает поглощение вследствие рассеяния.

Основная характеристика спектра возбуждений системы есть плотность состояний на единицу энергии D(). Она определяется мнимой частью функции Грина =GCPA. На основе одночастичной плотности состояний с помощью метода когерентного потенциала можно хорошо описать поведение параметра асферичности  для сплавов Ni, Fe и Co [177].

Параметр асферичности является важной характеристикой, экспериментально измеряемой с помощью рассеяния медленных нейтронов и определяется следующим соотношением:

g/  (79)

где  eg - магнитный элемент, определяемый электронами в состояниях eg- типа,  - полный спиновый магнитный момент.

Эксперименты по рассеянию нейтронов показывают, что измеряемые значения  в зависимости от  очень точно укладываются на прямую линию практически для всех сплавов Ni, Fe и Co. Т. е.

 = а +bm (80)

Только для чистого Ni это не выполняется; gNi значительно меньше величины, следующей из (80). Возможной причиной такого отклонения для чистого Ni может быть либо влияние корреляции электронов, либо специфика одно-частичного поведения системы. В [177] были рассмотрены только одно-частичные свойства системы в подходе Хасегава и Канамори (71) и показано, что для расчета параметра асферичности влияние корреляции не очень существенно. Как и в [169], рассматривалась область концентраций сплава при 0 ≤ с ≤ 0,5. Хасегава и Канамори с помощью метода когерентного потенциала вычислили магнитный момент m и локальные моменты m (Ni) и m (Fe). Их результаты хорошо согласуются с экспериментом. Однако, надо заметить, что они использовали не реальную плотность состояний, а сильно идеализированную функцию и проблема решалась с использованием многих свободных параметров.

В [177] впервые была использована реальная теоретическая плотность состояний [51, 178] для расчета параметра асферичности g Для точного расчета g необходимо было отдельно учесть eg- и t2g – состояния. Получить такие раздельные плотности весьма сложно из-за сильной гибридизации этих состояний. В [177] использовано то обстоятельство, что в точках и на линиях высокой симметрии, где гибридизация отсутствует, волновые функции можно отождествить с eg- и t2g – состояниями. Предполагалось, что количественно поведение волновых функций не сильно изменяется при переходе к другим точкам. Используемая теоретическая плотность состояний состоит из шести подзон, две из них связаны с s-электронами, а остальные четыре имеют в указанных точках и на линиях высокой симметрии поведение плотности состояний электронов в t2g и eg-состояниях. Поэтому можно предположить приближённое разделение плотности состояний на составляющие для t2g и eg- – электронов.

В методе когерентного потенциала, выражение для плотности состояний в сплаве имеет вид [177]

(ε) = - Im (ε), (81)

Характеристики

Тип файла
Документ
Размер
113,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее