2_results (732181), страница 2
Текст из файла (страница 2)
Для исследования возможности восстановления распределения ЭП рассмотрим результаты, полученные в предположении наличия точных данных (погрешность измерения отсутствует). На графиках в первых четырех пунктах Приложения 3 рассматриваемые зависимости показаны красным цветом (исходные данные черным). Исходя из них можно сделать следующие выводы
-
Восстановление с помощью аппроксимации, использованной при эмуляции измерений (решении прямой задачи), приводит к погрешности восстановления порядка 0.1%.
-
Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с хорошей точностью ( погрешность 2-5% ) для приповерхностных слоев глубиной порядка четверти пластины.
-
Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной возможно с хорошей точностью ( погрешность 2-3% ). Погрешность восстановления увеличивается с уменьшением глубины.
-
Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.
-
Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с хорошей точностью (погрешность 2-3%). Погрешность восстановления увеличивается с уменьшением глубины, занимаемой распределением.
9.4 Восстановление по зашумленным данным
Рассмотренные в данном разделе результаты демонстрируют возможность восстановления распределений ЭП в реальных условиях. Графики представлены в первых четырех пунктах Приложения 3.
На графиках рассматриваемые зависимости показаны цветами: результат восстановления при погрешности данных равной 1% - голубым, результат восстановления при погрешности данных равной 2% - коричневым, результат восстановления при погрешности данных равной 5% - синим.
Исходя из них можно сделать следующие выводы:
-
Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с хорошей точностью ( погрешность 2-8% ) для приповерхностных слоев глубиной порядка четверти пластины.
-
Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной затруднено( погрешность осциллирует в пределах 0-10% ). Погрешность восстановления увеличивается с уменьшением глубины, занимаемой распределением.
-
Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.
-
Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с хорошей точностью (погрешность 3-6% для одноименных аппроксимаций и 7-10% в противном случае). Погрешность восстановления увеличивается с уменьшением глубины, занимаемой распределением.
9.5 Восстановление с учетом дополнительной информации
С целью улучшения результатов восстановления в реальной обстановке, осложненной наличием зашумленных данных, следует использовать более жесткие ограничения на величину ЭП в приповерхностных слоях.
Для иллюстрации приведем несколько графиков, представленных в пятом пункте Приложения 3. На графиках рассматриваемые зависимости показаны цветами: базовые ограничения - коричневым, жесткие ограничения на верхней поверхности - голубым, жесткие ограничения на обоих поверхностях - малиновым.
Исходя из полученных результатов можно сделать следующие выводы
-
Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью для приповерхностных слоев глубиной порядка четверти пластины. Дополнительные жесткие ограничения результаты восстановления не улучшают.
-
Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной затруднено. Дополнительные жесткие ограничения результаты восстановления не улучшают.
-
Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.
-
Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью (погрешность 6-10% ). Погрешность восстановления уменьшается при использовании дополнительные ограничений примерно вдвое, особенно в приповерхностном слое толщиной порядка 10%.
9.6 Восстановление при различном возбуждении
Для выбора необходимого количества измерений Uвн* и соответствующих им частот возбуждения ВТП рассмотрим три возможных диапазона частот, в каждом из которых исследуем случаи пяти, десяти и пятнадцати частот.
На графиках в шестом пункте Приложения 3 рассматриваемые зависимости показаны цветами: 5 частот - коричневым, 10 частот - голубым , 15 частот - малиновым.
Область низких частот
Исходя из полученных результатов можно сделать следующие выводы
-
Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью для приповерхностных слоев глубиной порядка четверти пластины. Для улучшения результатов восстановления следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.
-
Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной затруднено. Для улучшения результатов восстановления в приповерхностном слоев глубиной порядка четверти пластины следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.
-
Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.
-
Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью (погрешность 6-8% ). Для улучшения результатов восстановления следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.
Область средних частот
Исходя из полученных результатов можно сделать следующие выводы:
-
Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью для приповерхностных слоев глубиной порядка четверти пластины. Для улучшения результатов восстановления следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.
-
Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.
-
Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.
-
Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью (погрешность 6-8% ). Для улучшения результатов восстановления следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.
Область высоких частот
Исходя из полученных результатов можно сделать следующие выводы:
-
Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью для приповерхностных слоев глубиной порядка четверти пластины. Для улучшения результатов восстановления следует использовать 15, что позволяет восстанавливатьраспределения с погрешностью (2-5)%.
-
Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.
-
Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.
-
Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью. Для улучшения результатов восстановления следует использовать 15 частот.
10. Заключение
По результатам проделанной работы можно сделать следующие выводы:
-
Существует принципиальная возможность восстановления как поверхностных так и глубинных распределений ЭП с погрешностью, не превышающей (2-3)%. Для восстановления поверхностных распределений следует использовать экспоненциальную и гиперболическую аппроксимации, а для глубинных сплайн и кусочно-постоянную (возможно использование экспоненциальной и гиперболической аппрксимаций для в приповерхностном слое глубиной порядка четверти пластины).
-
Существенное отрицательное влияние на результаты восстановления имеют погрешность измерения Uвн* (не следует использовать данные с погрешностью измерения более 2%) и малая глубина распределения ЭП (распределения ЭП сосредоточенные в приповерхностном слое глубиной менее (3-5)% восстанавливаются хуже).
-
Использование жестких ограничений на величину ЭП в приповерхностных слоях оправдано при восстановлении поверхностных распределений, причем при наличии данных с погрешностью, превосходящей 2%, или малой глубины распределения предпочтительнее задавать ограничения на обеих поверхностях. При зашумленности данных порядка (1-2)% достаточно задать жесткие ограничения лишь на верхней поверхности.
-
В наборе частот возбуждения ВТП должны присутствовать низкочастотные составляющие, влияние которых особенно заметно при работе с глубинными распределениями и соответствующими аппроксимациями. Рекомендуется использовать порядка десяти частот, равномерно распределенных по частотному диапазону (0.001¸70)КГц. В условиях высокой погрешности измерений или отчетливо выраженных приповерхностных изменениях ЭП заметное положительное влияние оказывает увеличение числа частот возбуждения ВТП (например, до пятнадцати.).
В процессе работы над задачей был проведен анализ литературы, выбрана модель задачи и способы ее аппроксимации. При помощи программы, разработанной согласно предложенной модели, были проведены расчеты модельных задач и рассмотрены результаты восстановления распределений ЭП в зависимости от основных влияющих факторов.
Таким образом, цели, поставленные в техническом задании, решены в полном объеме.
11. Литература
-
Неразрушающий контроль качества изделий электромагнитными методами, Герасимов ВГ, 1978,215
-
Вихретоковый контроль накладными преобразователями., Герасимов ВГ,1985,86
-
Вихретоковые методы и приборы неразрушающего контроля., Рудаков ВН, 1992, 72
-
Накладные и экранные датчики., Соболев ВС, 1967, 144
-
Теория и расчет накладных вихретоковых преобразователей., Дякин ВВ, 1981, 135
-
Основы анализа физических полей.,Покровский АД, 1982, 89
-
Дефектоскопия металлов., Денель АК, 1972, 303
-
Индукционная структуроскопия., Дорофеев АЛ,1973,177
-
Структура и свойства металлов и сплавов.Справочник., Шматко ОА,1987,580
-
Некорректные задачи Численные методы и приложения., Гончарский АВ,1989,198
-
Некорректные задачи матфизики и анализа., Лаврентьев ММ,1980,286
-
Линейные операторы и некорректные задачи., Лаврентьев ММ,1991,331
-
Методы решения некорректно поставленных задач Алгоритмич. аспект., Морозов ВА, 1992,320
-
Численные методы решения некорректных задач., Тихонов АН,1990,230
-
Начала теории вычислительных методов, Крылов ВИ,1984,260
-
Математическое программирование в примерах и задачах., Акулич ИЛ,1993,319
-
Математическое программирование., Карманов ВГ,1986,286
-
Математическое программирование., Орехова РА,1992,290
-
Нелинейное программирование Теория и алгоритмы., Базара М,1982,583
-
Прикладное нелинейное программирование., Химмельблау Д,1975,534
-
Введение в методы оптимизации., Аоки М,1977,344
-
Введение в оптимизацию., Поляк БТ,1983,384
-
Курс методов оптимизации., Сухарев АГ,1986,326
-
Практическая оптимизация., Гилл Ф,1985,509
-
Численные методы оптимизации., Полак Э,1974,367
-
Алгоритмы решения экстремальных задач., Романовский ИВ,1977,352
-
Методы решения экстремальных задач., Васильев ФП,1981,400
-
Методы решения экстремальных задач и их применение в системах оптимизации., Евтушенко ЮГ, 1982,432
-
Численные методы решения экстремальных задач., Васильев ФП,1988,549
-
Введение в вычислительную физику., Федоренко РП,1994,526
-
Методы математической физики., Арсенин ВЯ,1984,283
-
Уравнения математической физики., Тихонов АН,1977
-
Уравнения математической физики., Владимиров ВС,1988,512
-
Метод интегральных уравнений в теории рассеивания., Колтон Д,1987,311
-
Теория электромагнитного поля., Поливанов КМ,1975,207
-
Eddy current testing. Manual on eddy current method., Cecco VS,1981,195
-
Optimization methods with applications for PC., Mistree F,1987,168
-
Electromagnetic inverse profiling., Tijhuis AG,1987,465
-
Inverse acoustic and electromagnetic scattering theory., Colton D,1992,305
-
" Накладной электромагнитный преобразователь над объектом контроля с изменяющимися по глубине электрическими и магнитными свойствами", Касимов ГА, Кулаев ЮВ, "Дефектоскопия", 1978, №6, с81-84
-
" Возможности применения методов теории синтеза излучающих систем в задачах электромагнитного контроля ", Кулаев ЮВ, 1980, тематический сборник "Труды МЭИ", выпуск 453, с12-18
-
" Analitical solutions to eddy-current probe-coil problems " , Deeds WE, Dodd CV, ²Journal of Applied Phisics², 1968, vol39, ?3, p2829-2838
-
" General analysis of probe coils near stratified conductors " , Deeds WE, Dodd CV,²International Journal of Nondestructive Testing², 1971, vol3, ?2, p109-130
-
" Tutorial. A review of least-squares inversion and its application to geophysical problems ", Lines LR, Treitel S, "Geophysical Prospecting ", 1984, vol32, ?2, p159-186
-
" Eddy current calculations using half-space Green’s functions " , Bowler JR, ²Journal of Applied Phisics², 1987, vol61, ?3, p833-839
-
" Reconstruction of 3D conductivity variations from eddy current( electromagnetic induction ) data ", Nair SM, Rose JH, ² Inverse Problems², 1990, ?6, p1007-1030
-
" Electromagnetic induction (eddy-currents) in a conducting half-space in the absence and presence of inhomogeneities: a new formalism " , Nair SM, Rose JH, ²Journal of Applied Phisics², 1990, vol68, ?12, p5995-6009
-
" Eddy-current probe impedance due to a volumetric flaw " , Bowler JR, ²Journal of Applied Phisics², 1991, vol70, ?3, p1107-1114
-
" Theory of eddy current inversion " , Bowler JR, Norton SJ, ²Journal of Applied Phisics², 1993, vol73, ?2, p501-512
-
" Impedance of coils over layered metals with continuously variable conductivity and permeability: Theory and experiment " , Rose JH, ²Journal of Applied Phisics², 1993, vol74, ?3, p2076
-
" Eddy-current interaction with ideal crack " , Bowler JR, ²Journal of Applied Phisics², 1994, vol75, ?12, p8128,8138
-
" Method of solution of forward problems in eddy-current testing " , Kolyshkin AA, ²Journal of Applied Phisics², 1995, vol77, ?10, p4903-4912
Приложение 1. Программная реализация















