149632 (731975), страница 3

Файл №731975 149632 (Молекулярно кинетическая теория) 3 страница149632 (731975) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Налет серебра на стенке цилиндра Д получался размытым, что подтверждало наличие различных скоростей движения молекул Из опыта можно было определить наиболее вероятную скорость vвер которая соответствовала наибольшей толщине налета серебра.

Наиболее вероятную скорость можно рассчитать по формуле, данной Максвеллом: . (18) По вычислениям Максвелла средняя арифметическая скорость движения молекул равна: . (19)

6.Энергия поступательного движения молекул газа

Кинетическая энергия, которой обладают n молекул газа при некоторой температуре Т вследствие своего поступательного движения равна: или Так как , то . (20)

Из основной формулы кинетической теории (12) следует, что . (21)

Разделив (20) на (21), получим: или . (22)

Заменим и запишем . (23)

Если газ взят в количестве одного моля , то: . (24)

Средняя кинетическая энергия поступательного движения одной газовой молекулы: Так как , то . (25)

При одной и той же температуре средняя энергия поступательного движения молекул любого газа одна и та же.

7.Уравнение состояния идеального газа - уравнение Менделеева-Клапейрона


Из основного уравнения молекулярно-кинетической теории (см. формулу (14)) следует закон Авогадро: в равных объемах разнородных газов при одинаковых условиях (одинаковой температуре и одинаковом давлении) содержится одинаковое число молекул:

(для одного газа),

(для другого газа).

Если V1 = V2; Т1 = Т2; 1 = 2, то n01 = n02.

Напомним, что единицей количества вещества в системе СИ является моль (грамммолекула) масса  одного моля вещества называется молярной массой этого вещества. Число молекул, содержащихся в одном моле разных веществ одинаково и называется число Авогадро (NA = 6,021023 1/моль).

Запишем уравнение состояния идеального газа для одного моля: , где V - объем одного моля газа; , где V - объем одного моля газа; (универсальная газовая постоянная).

Окончательно имеем: (26).

Уравнение (26) называется уравнением Клапейрона (для одного моля газа). При нормальных условиях (р = 1,013105 Па и Т = 273,150К) молярный объем любого газа Vm = 22,410-3 . Из формулы (26) определим

; . От уравнения (26) для моля газа можно перейти к уравнению Менделеева-Клапейрона для любой массы газа m. Отношение дает число молей газа. Левую и правую части неравенства (26) умножим на . Имеем , где объем газа). Окончательно запишем: 27). Уравнение (27) - уравнение Менделеева-Клапейрона. В это уравнение можно внести плотность газа и . В формуле (27) заменим V и получим или (28).


8.Опытные газовые законы. Давление смеси идеальных газов (закон Дальтона)

Опытным путем, задолго до появления молекулярно-кинетической теории, был открыт целый ряд законов, описывающих равновесные изопроцессы в идеальном газе. Изопроцесс - это равновесный процесс, при котором один из параметров состояния не изменяется (постоянен). Различают изотермический (T = const), изобарический (p = const), изохорический (V = const) изопроцессы. Изотермический процесс описывается законом Бойля-Мариотта: "если в ходе процесса масса и температура идеального газа не изменяются, то произведение давления газа на его объем есть величина постоянная PV = const(29). Графическое изображение уравнения состояния называют диаграммой состояния. В случае изопроцессов диаграммы состояния изображаются двумерными (плоскими) кривыми и называются соответственно изотермами, изобарами и изохорами.

Изотермы, соответствующие двум разным температурам, приведены на рис. 6.

Рис. 6

Изобарический процесс описывается законом Гей-Люссака: "если в ходе процесса давление и масса идеального газа не изменяются, то отношение объема газа к его абсолютной температуре есть величина постоянная: (30).

Изобары, соответствующие двум разным давлениям, приведены на рис.7.

Рис. 7

Уравнение изобарического процесса можно записать иначе: 31), где V0 - объем газа при 00С; Vt - объем газа при t0C; t - температура газа в градусах Цельсия;  - коэффициент объемного расширения. Из формулы (31) следует, что . Опыты французского физика Гей-Люссака (1802 г) показали, что коэффициенты объемного расширения всех видов газов одинаковы и , т.е. при нагревании на 10С газ увеличивает свой объем на часть того объема, который он занимал при 00С. На рис. 8 изображен график зависимости объема газа Vt от температуры t0C.

Рис. 8



Изохорический процесс описывается законом Шарля: "если в ходе процесса объем и масса идеального газа не изменяются, то отношение давления газа к его абсолютной температуре есть величина постоянная: (32)

Изохоры, соответствующие двум разным объемам, приведены на рис. 9.



Рис. 9



Уравнение изохорического процесса можно записать иначе: (33), где - давление газа при

С; - давление газа при t; t - температура газа в градусах Цельсия; - температурный коэффициент давления. Из формулы (33) следует, что . Для всех газов и . Если газ нагреть на С (при V=const), то давление газа возрастет на часть того давления, которое он имел при

С.

На рис.10 изображен график зависимости давления газа от температуры t.

Рис. 10

Если продолжить прямую AB до пересечения ее с осью x ( точка ), то значение абциссы этой определиться из формулы (33), если приравнять нулю.

; . Следовательно, при температуре давление газа должно было бы обратиться в нуль, однако, при подобном охлаждении газ не сохранит своего газообразного состояния, а обратиться в жидкость и даже в твердое тело. Температура носит название абсолютного нуля.

В случае механической смеси газов, не вступающих в химические реакции, давление смеси также определяется формулой , где (концентрация смеси равно сумме концентраций компонентов смеси всего n - компонент).

Закон Дальтона гласит: Давление смеси равно сумме парциальных давлений газов, образующих смесь. . Давления называется парциальными. Парциальное давление - это давление которое создавал бы данный газ, если бы он один занимал тот сосуд, в котором находится смесь (в том же количестве, в котором он содержится в смеси).

-18-


Характеристики

Тип файла
Документ
Размер
271 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6508
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее