149596 (731901), страница 21

Файл №731901 149596 (Лекции по гидравлике) 21 страница149596 (731901) страница 212016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 21)

Интегрируя это уравнение, найдём:

, или:

Отсюда можно получить выражение для расхода жидкости:

Отсюда определим величину перепада давления, обеспечивающую движение жидко­сти и соответствующую величину потерь напора на трение.

Сопоставляя полученное выражение с формулой Дарси-Вейсбаха, найдём величину коэффициента трения и обобщённый критерий Рейнольдса:

13. Гидравлическая теория смазки 13.1. Ламинарное движение жидкости в узких щелях

В большинстве машин и механизмов с целью снижения трения между движущимися узлами используются принципы гидравлической смазки, когда малые зазоры между со­прикасающимися элементами заполняются низковязкой или другой жидкостью. В данном случае процесс сухого трения между твердыми движущимися телами заменяется сколь­жением. Гидравлическая смазка используется также и в случаях, когда необходимо вы­полнить изоляцию зазоров от проникновения через них жидкостей. Эти чисто практиче­ские задачи связаны с теорией течения жидкости в узких щелях, разработанных Буссинэ и Н.П. Петровым.

Эту задачу рассмотрим на классическом уровне. Возьмём две плоские одинаковые

пластины, расположенные параллельно друг другу на малом расстоянии друг от друга. Эти пластины образуют межды собой тонкую щель (зазор) d.

Щель будет считаться тонкой, если её ширина d во много раз меньше размеров пла­стин и , где L и В - размеры пластины. Проведем в потоке щели два парал­лельных друг другу сечения на расстоянии / и выделим малый отсек жидкости в виде па­раллелепипеда со сторонами: и 2у. Жидкость движется вдоль оси ОХ (на рисунке 2 слева на право). Грани, через которые жидкость втекает внутрь выделенного отсека и вы­текает из него, имеют площадь . К этим граням приложены силы давления рав­ные:

Гогда выделенный отсек жидкости будет находиться в состоянии равновесия под действием сил давления трения и силы тяжести.

где: - площадь верхней и нижней граней отсека жидкости.

Подставив в уравнение величины площади пластин и граней, и преобразовав уравне­ние, получим:

Тогда:

5

где: - гидравлический уклон.

13.2. Распределение скоростей и касательных напряжений в щелевом зазоре

После интегрирования полученного дифференциального уравнения получим:

Величина постоянной интегрирования может быть получена исходя из условия, что скорость на гране пластины равна 0, т.е. при , и = 0 . ^

5

В центре потока скорость будет максимальной, т.е. при у = О

Вычислим величину средней скорости потока, для чего найдём величину расхода че­рез щель. Элементарный поток жидкости dQ в тонком слое dy будет равен:

откуда:

откуда средняя скорость в потоке.

т.е. для потока в тонкой щели соотношение между средней скоростью и максимальной иное, чем в круглой трубе:

Потери напора будут равны.

3

Если одна из пластин будет двигаться относительно другой неподвижной пластины с постоянной скоростью, а давление в щели будет постоянным по всей длине, то при таком параллельном перемещении движущаяся пластина будет увлекать за собой жидкость. Та­кое перемещение жидкости называется безнапорным фрикционным движением. Выделим

в этом потоке элементарный объём жид­кости также в виде параллелепипеда.

Поскольку величины сил давления на левую и правую боковые грани оди­наковы, то для равновесия необходимо, чтобы и силы трения, действующие вдоль верхней и нижней граней выде­ленного отсека тоже были одинаковыми.

f j

После интегрирования получим:

Величины постоянных интегрирования получим при следующих условиях:

при у = О и - 0 , при

Следовательно: и, т.е. будем иметь закон распределения

скоростей по сечению зазора

Таким образом, скорость по сечению зазора распределяется по линейному закону. Величина касательных напряжений постоянна по сечению зазора:

Тогда сила трения, действующая на пластину, будет равна:

расход жидкости через зазор:

т.е. средняя скорость фрикционного потока равна половине максимальной скорости:

Выводы, полученные для плоских пластин легко перенести на криволинейные по­верхности, если допустить, что радиус кривизны такой поверхности бесконечно велик по сравнению с шириной зазора, что соответствует действительности.

В то время, когда жидкость проникает в узкую щель между неподвижными стенками за­зора, на поверхности стенок происходит адсорбция поляризованных молекул жидкости, обусловленная силами межмолекулярного взаимодействия. В результате этого на поверх­ности стенок образуется фиксированный слой жидкости, обладающий значительной прочностью на сдвиг, а живое сечение щели уменьшается. Это явление носит название облитерации Интенсивность облитерации зависит от свойств жидкости. Сложные по строению высокомолекулярные жидкости обладают значительно большей степенью обли­терации, по этой причине разного рода смазки являются подходящим средством для уп­лотнения соединений и устранения возможных утечек.

Явление облитерации необходимо учитывать при запуске оборудования, когда при­ходится преодолевать дополнительные усилия на страгивание простаивающих элементов оборудования.

14. Элементы теории подобия

Решение задач гидравлики аналитическими методами на базе дифференциальных уравнений и различных методов математического анализа не нашло широкого примене­ния для практических целей. Необходимость ввода различных допущений и ограничений позволяют использовать полученные строгие решения лишь как качественные оценки изучаемых процессов. Практические же результаты, как правило, достигаются экспери­ментальными методами исследований. Построение модели того или иного процесса также связано с немалыми трудностями. Это, прежде всего, необходимость точного знания фи­зической стороны изучаемого процесса, умение выделить существенные стороны и фак­торы, добиться полной аналогии построенной модели с натурой и т.д. Поэтому даже все­стороннее знание природы изучаемого процесса не гарантирует абсолютный успех.

При решении практических задач в гидравлике пользуются обеими известными ме­тодами построения моделей как физическим, так и математическим моделированием.

При физическом моделировании модель, как и натура, имеют одинаковую физиче­скую природу и отличаются друг от друга лишь размерами. При математическом модели­ровании модель имеет иное, чем натура, физическое содержание: общими у них являются лишь одинаковые дифференциальные уравнения, описывающие сходные физические про­цессы, протекающие в модели и натуре.

Подробное изучение методов моделирования не является задачей настоящего курса, эти вопросы рассматриваются в специальных дисциплинах. В настоящем курсе мы лишь назовём некоторые положения касающиеся основ построения таких моделей

14.1. Физическое моделирование

Физическая модель отличается от натуры лишь размерами, т.е. модель по своим раз­мерам может быть, чаще всего лишь уменьшенной копией натуры, либо она может (в не­которых случаях) превосходить по своим размерам натуру. И в том и другом случае, для успешного и правильного построения модели необходимо, прежде всего, знать основные законы подобия. Модель и натура будут адекватны между собой, если при построении модели будут выполнены все основные элементы подобия. К таким условиям относятся критерии геометрического, кинематического и динамического подобия.

Для геометрического подобия необходимо, чтобы отношение любых сопоставляе­мых линейных размеров модели и натуры были бы одинаковыми. Так протяжённость мо­дели и натуры, а также и другие прочие размеры должны находится между собой в про­порциональной зависимости:

где: и - линейный размер соответственно на модели и на натуре,

- коэффициент геометрического подобия, масштаб моделирования.

В таком случае, при сопоставлении размеров площадей на модели и натуре должен соблюдаться такой же масштабный множитель, но с учётом порядка мерности величины:

Т.е. при сопоставлении размеров площадей на модели и на натуре соотношение этих величин будет равно квадрату масштабного линейного множителя. Соответственно для сопоставления объёмов:

Для кинематического подобия необходимо, чтобы траектории всех сопоставимых частиц были геометрически подобны, т.е. при этом кроме геометрического подобия со­поставимых криволинейных отрезков модели и натуры выполнялось ещё подобие сопос­тавимых интервалов временни в моделе и натуре.

Тогда величины скоростей движения частиц в модели и натуре будут относиться между собой как:

5 - величины расходов жидкости: '

Для динамического подобия сравниваемых потоков необходимо, чтобы в соответст­вующих местах потоков были подобны действующие в них одноимённые силы. Пусть в сопоставимых точках потока жидкости и строящейся модели этого потока действует неко­торая инерциальная сила F. Тогда при соблюдении геометрического и кинематического подобия, критерий динамического подобия может быть выражен следующим образом:

Характеристики

Тип файла
Документ
Размер
1,29 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее