149579 (731857), страница 4
Текст из файла (страница 4)
Второе уравнение перепишем в виде:
Подставив вместо sin ωt и cos ωt их значения будем иметь уравнение движения
Исследуем некоторые частные случаи.
а) при равенстве частот имеет место еще и равенство фаз, т.е. φ = 0.
Уравнение траектории имеет вид
Уравнение прямой, проходящей через начало координат под углом ά:
С мещение от начала координат определяется уравнением
Т.к. уравнение слагаемых колебаний имеет вид
Таким образом результирующее движение является гармоническим колебанием.
б) составляющая колебания отличается по фазе на π/2 . Уравнение траектории имеет вид:
- эллипс с плоскостями a и b.
П ри равенстве амплитуд траектории представляют собой окружность.
2) При сложении взаимно перпендикулярных колебаний, частоты которых кратны между собой, например ω1 : ω2 = 1/2 , 2/3 и т.д. = m/n ,
где m и n – целые числа, колеблющееся тело описывает сложные кривые (наз. Фигурами Лисажу), форма которых определяется отношением частот складываемых колебаний, их амплитудой и разностью фаз между ними
ω1 : ω2 = 2 : 1 ω1 : ω2 = 3 : 2
Δφ = 0 Δφ = π / 2 Δφ = 0 Δφ = π / 4