PVH (731786), страница 4

Файл №731786 PVH (Дослідження впливу наповнювача на структурну організацію і міжфазну взаємодію в композиційних полімерних матеріалах) 4 страницаPVH (731786) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

0 – коефіцієнт теплопровідності ПВХ, рівний 0,148 Вт/мК при Т = 290К.

Для розрахунку  композицій використовують принцип узагальненої теплопровідності, враховуючи, що характерною особливістю структури таких систем являється неперервність полімерної матриці в довільному напрямку і дискретне розміщення частинок наповнювача, а також існування граничного шару на межі поділу фаз.

Під час визначення ефективного коефіцієнта теплопровідності випливає, що його значення залежить від коефіцієнта теплопровідності граничного шару[1], а саме  для елементарної комірки рівний:

(6)

У формулі (6) фігурує ефективна товщина ГШ –, яка являється однією з кількісних мір взаємодії полімера з наповнювачем.

Визначення lгш
дозволяє розрахувати об’ємний вміст граничного шару у гетерогенній полімерній системі. Розглянемо метод її визначення запропонований у [1].

В наповнених полімерних системах дисперсна частинка наповнювача оточена ГШ, що являє собою третю компоненту. В області вмісту наповнювача менш критичного (н<кр) високодисперсний наповнювач не знаходиться в вузлах регулярної структури, займає випадкові положення в просторі. Хаотичне розміщення частинок наповнювача, в цьому випадку, важко визначити математично, як це можна зробити в кристалічній решітці. Однак, при н<кр наповнену систему можна як і раніше моделювати вигляді сукупності частинок наповнювача, розділених полімерним прошарком lп, на яких адсорбований ГШ товщиною lгш.
. Таким чином, L= lп+ 2lгш.
, де L – відстань між двома частинками наповнювача.

В міру зростання вмісту наповнювача в системі все більша кількість полімерної матриці переходить в стан ГШ. Із рівняння адсорбційної ізотерми слідує, що маса ГШ m1 в розрахунку на полімер рівна:

m1= М(1 – е-N) (7)

де  – коефіцієнт пропорційності, N – число частинок наповнювача, М – маса полімерної матриці.

Розглянувши ГШ, як сферичний прошарок товщини lгш отримаємо, що ефективний об’єм ГШ полімерної системи, що містить N частинок наповнювача, буде рівним:

, (8)

Із рівняння (7) маємо:

(9)

Коефіцієнт  визначимо, як міру активності наповнювача, на основі стрибка теплоємності для наповненого і ненаповненого полімера:

(10)

При кр  н трикомпонентна система виродиться в двохкомпонентну типу наповнювач-ГШ. Коли буде виконуватись умова кр = н, а це можливо для рівномірно диспергованих частинок в полімері, отримаємо залежність:

(11)

де п – густина полімерної матриці.

Підсумовуючи необхідно відмітити, що об’ємний вміст граничного шару на межі розподілу фаз полімера і наповнювача впливає на такі теплофізичні характеристики полімерної композиції, як ефективний коефіцієнт теплопровідності та інші.

Аналізуючи результати оцінки (табл. 2.3-1), отримані у [1] під час вимірювання гш можна зробити наступні висновки.

Табл. 2.3‑2

Композиція

об, %

гш, Вт/мК

Композиція

об, %

гш, Вт/мК

ПВХ+W

0,07

0,18

ПВХ+Cu

0,12

0,26

0,22

0,23

0,38

0,29

0,37

0,24

0,64

0,32

2,90

0,34

1,40

0,37

6,60

0,39

5,00

0,47

9,50

0,42

11,00

0,52

14,10

0,45

16,60

0,57

21,90

0,47

22,30

0,61

38,70

0,50

33,10

0,64

50,10

0,55

50,30

0,70

60,30

0,62

60,10

0,81

Отримані результати по визначення ефективного коефіцієнта теплопровідності граничних шарів ПВХ і ПВБ систем представлені в
табл. 2.3-1. Із аналізу якої слідує, що з підвищенням концентрації наповнювача в композиції спостерігається зміна гш. Так, для систем ПВХ по мірі збільшення вмісту W або Cu в композиції гш зростає в усьому діапазоні концентрацій наповнювача. При цьому гш залишається більшим  ПВХ. Крім того, гш близький до  ПВХ-систем У випадку ІІВБ-композицій при вмісті наповнювача меншому за критичний має місце екстремальне значення гш . Найбільш суттєві зміни гш спостерігаються при вмісті W чи Сu до 6 об. %. Саме для цієї області вмісту низькомолекулярних наповнювачів відмічається найбільш інтенсивна зміна ряду інших властивостей композицій. При подальшому збільшенні вмісту W і Сu в системі гш після досягнення екстремального значення має тенденцію до зменшення до області 15 у 20 об. % наповнювача. Наступне збільшення вмісту високодисперсного W чи Сu знову приводить до росту гш . Таку залежність можна пояснити "конкуруючими" ефектами, зв'язаними з зміцненням і розрихлюючою дією поверхні наповнювача на полімерну матрицю. Значить, чим більш активний наповнювач у відношенні до ПВХ чи ПВБ, тим більш інтенсивно, в області незначного вмісту (до 6 об. %), проявляється роль ГШ в формуванні теплофізичних властивостей композицій.

ВИСНОВКИ.

Введення наповнювача в полімер призводить до утворення речовин, властивості яких значно відрізняються від ненаповненого полімера. Наповнення полімера високодисперсними матеріалами характеризується виникненням фазового шару.

Граничний шар – це прошарок полімера, властивості якого змінюються під дією поверхні в порівнянні з властивостями полімера або наповнювача в об’ємі. Цей міжфазний шар характеризується деякими досить умовними параметрами: товщина граничного шару, коефіцієнт теплопровідності. Визначити ці параметри безпосередньо дуже складно, тому їх визначають на основі інших характеристик.

Встановлено, що існування межі поділу призводить до суттєвих змін релаксаційної поведінки полімера в міжфазному прошарку, зміні температур склування полімера і також інших властивостей полімерної системи.[3] Все це зв’язано з зміною густини молекулярної упаковки, а також з зменшенням рухливості сегментів полімерних ланцюгів і більших кінетичних елементів внаслідок їх взаємодії з твердою поверхнею.

Властивості гетерогенних полімерних систем визначаються кількістю полімера, який знаходиться в міжфазному прошарку. Кількісний зв’язок між властивостями міжфазного шару, об’ємним вмістом наповнювача і комплексом властивостей полімерних композицій потребує подальшого вивчення.

ВИКОРИСТАНА ЛІТЕРАТУРА.

  1. Колупаєв Б.С., Ліпатов Ю.С., Бордюк М.А., Дем’янюк Б.П. Вивчення полімерних матеріалів в загальноосвітній школі: навчальний посібник. – Рівне, 1993 р., 92 с.

  2. Колупаев Б.С. Релаксационные и термические свойства наполненных полимерных систем. - Львов: Вища школа, 1980.

  3. Липатов Ю.С. Физико-химические основы наполнения полимеров. - М.: Химия, 1991.

  4. Дулънев Γ.H„ Новиков В.В. Процессы переноса в неоднородных средах .- Л.: Энергоатомиздат, 1991.

  5. Бордюк М.А. Волошин О.М., Колупаев Б.С., Липатов Ю.С.//УФЖ.- 1996- 41, № 4 -c.438-441.

  6. Годовский Ю.К. Теплофизика полимеров,- М.: Химия, 1982.

  7. Колупаев Б.С. Физико-химия полимеров,- Львов: Вища школа, 1976.

  8. Колупаев Б.С; Демьянюк Б.П., Муха Б.И. Бордюк Н.А. //Композиц. полимер. материалы- 1984 - Вып. 23 - с.20-23.

  9. Бордюк Н.А., Колупаее Б.С., Волошин О.М. // Физика и техника высоких давлений.-1995-№3-с.49-58.

  10. Колупаєв Б.С., Бордюк М.А., Ліпатов Ю.С. //Доп. НАН України - 1995 - № 8 -с. 112-114.

  11. Кравченко С. Мониторы завтрашнего дня.//Chip. №11 – 1999 р., ст.24-26.

29


Характеристики

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее