PVH (731786), страница 2

Файл №731786 PVH (Дослідження впливу наповнювача на структурну організацію і міжфазну взаємодію в композиційних полімерних матеріалах) 2 страницаPVH (731786) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Полімерні матеріали поділяються на три основні класи: органічні, неорганічні і кремнійоорганічні. До складу органічних і кремнійоорганічних полімерів входить кисень і водень. Органічні полімери, в порівнянні з неорганічними, мають більш ширше застосування в техніці і становлять більший інтерес в науці. В залежності від способу отримання, фізичних і хімічних властивостей та застосування органічних полімерів їх поділяють на три групи: еластоміри, пластики (пластмаси) і полімерні волокна.

Розглянемо деякі основні ознаки цих груп полімерів.

  1. Еластоміри характеризуються високоеластичними властивостями при звичайній кімнатній температурі, їх температура склування (температура, при якій полімери при охолодженні переходять в склоподібний стан нижча 0° С. Серед еластомірів найбільш практичне значення мають каучуки.

  2. Пластики характеризуються інтенсивними міжмолекулярними взаємодіями. Тому температура силування або плавлення цих полімерів вища 80°С. При звичайних температурах пластмаси знаходяться в твердому кристалічному або аморфному (склоподібному) стані. Пластмаси – важливі конструкційні матеріали, часто – замінники металів.

  3. Волокноутворюючі полімери знаходяться в кристалічному стані і характеризуються сильними міжмолекулярними зв’язками. Температура плавлення цих полімерів 100-300°С. Природні і синтетичні волокна є основою для створення текстильних матеріалів і виробів.

  4. Біополімери складають основу живої природи і мають специфічну будову.

Хімічна будова і структура полімерів.

Н

Рис. 1.2-1.

езважаючи на величезну кількість атомів, які входять до складу полімерних речовин, хімічна будова їх (порядок з’єднання атомів у макромолекулі) порівняно нескладна. Хімічну будову, наприклад, полівінілхлориду схематично можна показати так: (СН2—СН2—С1)n. Число п вказує на кількість елементарних ланок мономера СН2 — СНС1 — вінілхлориду, що входять до макромолекули, і характеризує ступінь полімеризації полімера. Значення п коливається у великих межах, наприклад, у полістиролу від 1000 до 3000, полівінілхлориду – від 1500 до 3000. Структурні формули полімерів передають тільки порядок з’єднання атомів, а не передають просторового розміщення їх у макромолекулі. Так, атоми вуглецю, що становлять «кістяк» поліетилену – лінійного полімера, утворюють не прямий ланцюжок, а зигзагоподібний (рис. 1.2-1). Елементарні ланки в просторі розміщені по-різному, але структурною одиницею, що чітко повторюється, є один зигзаг, величина якого визначає період ідентичності.

Полімери залежно від їхнього походження поділяють на такі:

а) природні, які добувають з природних матеріалів, наприклад, полісахариди (целюлоза, крохмаль, білки, нуклеїнові кислоти, пектинові речовини та ін.);

б) штучні, які добувають за допомогою хімічної модифікації природних полімерів (наприклад, з целюлози віскозне та ацетатне волокна);

в) синтетичні, що їх добувають синтезом низькомолекулярних сполук (мономерів).

Рис. 1.2-2.

За хімічним складом основного, ланцюга полімери поділяють на гомоланцюгові і гетероланцюгові. Їхній ланцюг побудовано з однакових атомів, наприклад з атомів вуглецю. У гетероланцюгових полімерах головний ланцюг складається з різних атомів, наприклад з вуглецю і кисню, вуглецю і азоту, вуглецю і сірки і т. ін. Полімери поділяють також на органічні, неорганічні та елементоорганічні. Ланцюги органічних полімерів містять, крім атомів вуглецю, в комбінаціях з ними атоми водню, кисню, азоту, сірки та ін. Неорганічні полімери не мають атомів вуглецю. До них належать різні види скла і близько 80 % мінералів. Атоми їхніх ланцюгів з’єднані хімічними зв’язками, а між самими ланцюгами діють більш слабкі молекулярні сили. Елементоорганічні, або напіворганічні, – неорганічні полімери, бокові радикали яких – це так звані полісілоксани. Зв’язки Si—О—Sі називають сілоксановими; вони досить міцні. Практично всі елементоорганічні полімери синтетичні.

Специфічні властивості полімерів як в конденсованому твердому стані, так і в розчинах, сконцентровані в макромолекулі полімера. В за­гальному випадку макромолекули являють собою лінійні, розгалужені, східчасті і сітчасті (зшиті) малі системи (рис. 2). Макромоле­кули з лінійною струк­турою (поліетилен, по­лівінілхлорид, целю­лоза, натуральний кау­чук та ін.) являють со­бою довгі ниткоподібні ланцюги з дуже великим ступенем асиметрії, їхній поперечний розмір у тисячу і більше разів менший від довжини. Макромолекули з розгалуженою структурою (рис. 1.2-2) – це ланцюги з бічними відгалуженнями. Щоб добути їх, в процесі синтезу до лінійної макромолекули одного складу можна «прищепити» бічні ланцюги іншого складу. Такі розгалужені полімери називають прищепленими. Розгалужені полімери за довжиною бічних ланцюгів поділяють на коротко та довголанцюгові, а за характером взаємного розміщення їх — на статистичні, гребнеподібні та зіркоподібні.

Східчасті макромолекули є граничним варіантом циклоланцюгової лінійної макромолекули. Вони містяться в амфілолевих мінералах, які мають стрічкову структуру. Сітчасті полімери побудовані з макромолекулярних ланцюгів, з’єднаних один з одним поперечними хімічними зв’язками. Розрізняють плоскі та просторові сітчасті полімери. Класичними прикладами плоских та сітчастих полімерів є відповідно графіт та алмаз.

Макромолекулярні характеристики і топологія полімерів.

Властивості, що проявляються полімерами, закодовані в макромолекулі полімера. Топологія полімерів базується на основних властивостях макромолекул.

Як правило макромолекули синтетичних полімерів формуються в результаті процесу полімеризації (процес отримання високомолекулярних речовин, при якому макромолекула утворюється шляхом послідовного приєднанню молекул одного або декількох низькомолекулярних речовин до розширюючого активного центру) або поліконденсацією (процес утворення полімерів з бі- або поліфункціональних з’єднань, що супроводжуються виділення супутніх низькомолекулярних речовин (води, спирту, галогеноводню і т.д.)) Найчастіше вони являють собою лінійні, розгалужені або сітчасті (двох або тримірні) системи, що складаються з однакових (гомополімерів) або різних (співполімерів) елементів. Найпростішим прикладом полімеризації є утворення поліетилену з етилену:

n(CH2=CH2) –(CH2–CH2)n

Прикладом поліконденсації є утворення поліефіру з біофункціонального спирту і дикарбоксильної кислоти:

O || nHO – R1 – OH + nHOOC – R2 – COOH (HO – R1 – O – C – R2 )n-1

Тут R1 і R2 - аліфатичні або ароматичні радикали.

При полімеризації вихідний мономер, хоч і втрачає функціональну властивість, проте зберігає свою хімічну формулу. Однак, при поліконденсації формула повторюючої ланки відрізняється від хімічних формул вихідних компонентів.

Будемо характеризувати полімери молекулярною масою (М) або ступенем полімеризації (Р). Крім цих характеристик, важливою характеристикою є конфігурація макромолекул, тобто фіксоване розміщення атомів в полімерному ланцюгу , розгорнутих без спотворення валентних кутів і з


в’язках на деякій уявній площині:

Оскільки поліетилен-полімер, який не являється єдиним для характеристики конфігурації, на схемі один із атомів водню кожної ланки замінено на радикал R. Це нестереорегулярний чи атактичний полімер: радикал R розміщений з обох боків площини, в якій знаходиться виправлений ланцюг без будь-якого порядку. У більшості випадків такий полімер не може кристалізуватися.

Полімер з ланкою CH2–CHR відноситься до вінілових, для яких характерна стереорегулярність, тобто радикал розміщений з обох боків площини у відповідному порядку. Стереорегулярні або тактичні полімери можуть кристалізуватися , але не завжди: якщо бокові ланки R дуже пасивні, їх електронні оболонки неможна "загнати" в елементарну комірку.

Внаслідок гнучкості макромолекули набувають в процесі теплового руху різні просторові форми, що називаються конформаціями. Чим більшу елективну гнучкість мають полімерні ланцюги, тим швидше вони згортаються в статистичні клубки. Слід розрізнити вимушені конформації, яких, наприклад, набувають стереорегулярні полімери вінілового ряду в кристалічній решітці, і конформації, зумовлені тепловим рухом.

Таким чином, полімери мають цілий ряд характеристик (конфігурація, конформація, молекулярна маса) і характерних ознак:

  • конфігураційні ознаки - розгалуженість або сітсчатість структури

  • будова основного ланцюга – гомоланцюгові полімери (ланцюг складається а однакових атомів), гетероланцюгові (ланцюг – складається з атомів двох або більше видів).

  • полярність, визначається будовою як основною ланцюга, так і бокових груп. Граничний варіант полярних полімерів – поліелектроліти.

  • дифільність або амфіфільність, тобто здатність одних частин макромолекули віддавати перевагу, наприклад, полярному оточенню, а інших - неполярному. Дифільність більш характерна для пополімерів, що мають два або більше типів ланок.

  • полідисперсність, тобто існування деякого статичного розподілу макромолекул по ступенях полімеризації (для гомополімерів), і по складу (для сополімерів).

Структура полімерів.

Загальні характеристики, основні поняття.

Структура полімерів - це взаєморозміщення в просторі, внутрішня будова і характер взаємодії (зв’язку) між структурними елементами, що утворюють макроскопічне тіло. У даному визначенні використовується термін структурний елемент, який потребує пояснення, і який є запозиченим із статистичної фізики: Структура будь-якого фізичного тіла - це набір поступово ускладнених підсистем, що володіють певною обмеженою автономністю. Число виділених підсистем може бути більшим за одиницю. Наприклад, в металах необхідно розглядати як мінімум дві підсистеми: ансамбль іонізованих атомів, що утворюють - кристалічну гратку; і електронів (електронний газ), що відповідають за макроскопічні електромагнітні властивості. У випадку простих діелектриків виділена система - молекула, в більшості випадків дипольна, а в випадку полімерів - макромолекула, що володіє складною структурою.

Структурний елемент - характеристична частинка, яка утворює у величезній сукупності собі подібних відповідну підсистему, яка характеризує рівень структурної організації.[3]

Велика заслуга в поясненні характерних властивостей полімерів на структурній основі належить академіку В.А. Каргіну, який встановив, що однією із важливих особливостей полімерів є достатньо велика різноманітність їх надмолекулярних структур.[1]

Структурні елементи макромолекул – ланки ланцюгів. Макромолекули, особливо лінійні чи помірно розгалужені, слід виділяти в особливу підсистему, оскільки їх властивості дозволяють пояснити полімерний стан як особливу форму конденсації речовини. Значить, властивості макромолекул (закодована в них структурна інформація) передаються через всі наступні НМО полімерів.

Надмолекулярні структуроутворення.

Згідно поглядів Каргіна, Китайгородського і Сломінського полімери являють собою систему, яка складається з кристалічних і аморфних областей, які утворюють єдину складну фазу. При цьому в таких системах спостерігається утворення з десятків щільно складених, переважно паралельно, макромолекул – пачок. Пачкову будову мають жорстколанцюгові аморфні полімери.

Більш гнучкі макромолекули легко згортаються в так звані глобули. У результаті подальшої організації “пачок” виникають фібрилярні утворення. Характер таких надмолекулярних структур визначається умовами синтезу полімера і отримання із нього зразків.[1]

Фазовий стан і фазові перетворення полімерів.

Полімери можуть знаходитися в кристалічному, рідкому, рідкокристалічному фазовому стані. У кристалічному фазовому стані наявний трансляційний порядок в розміщенні частин макромолекули, що утворює кристалографічну комірку, в рідкому – тільки ближній. Рідкокристалічний фазовий стан є проміжним між кристалічним і рідкім. В рідкокристалічному фазовому стані макромолекули розміщені паралельно одна відносно одної і мають ближній орієнтаційний порядок. Поняття “фазовий стан ” не співпадає з поняттям “агрегатний стан”. рідкий фазовий стан за агрегатним станом може бути твердим (склоподібним чи високоеластичним) і рідким (в’язкотекучим).

Характеристики

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее