2 (731757), страница 2

Файл №731757 2 (Гелиоэнергетика: состояние и перспективы) 2 страница2 (731757) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Дальнейшего повышения равновесной температуры поглотителя можно добиться, если с помощью зеркал сконцентрировать на нем энергию солнечного излучения. На рис. 2 схематически показано одно из таких простейших устройств с плоскими зеркалами. Очевидно, что при использовании полностью отражающей зеркальной системы интенсивность облучения поглотителя увеличивается пропорционально отношению общей облучаемой поверхности зеркал к поверхности поглотителя. Этот показатель называется коэффициентом концентрации К. Зеркала монтируют таким образом, чтобы все падающие лучи были направлены на поверхность поглотителя. Если поглотитель квад­ратной формы снабжен, как показано на рис. 2, че­тырьмя зеркалами того же размера (что облегчает компоновку и сборку устройства), установленными под углом β = 60°, то в этом случае коэффициент концентрации равен 3. На практике реализовать все достоинства подобной конструкции оказывается невоз­можным, поскольку отражающая способность зеркал меньше 100%, а при малых углах падения поглощательная способность поглотителя снижается. Тем не менее, величина К, как правило, бывает не ниже 2. В данных условиях равновесная температура плоского солнечного коллектора с зеркальными отражателями рассмотренного типа достигает 180° С (для ней­трального поглотителя) и 332° С (для селективного


Рис. 2. Концентрация солнечного

излучения с помощью плоских зеркал.

Рис.3. Концентрация солнечного

излучения с помощью параболического зеркала.

поглотителя). Следует заметить, что в данном случае с помощью рефлекторов усиливается лишь прямая составляющая солнечной радиации, так как скон­центрировать рассеянную составляющую оказывается невозможным.

Наиболее совершенной конструкцией обладает па­раболический концентратор, который фокусирует сол­нечные лучи так, как это показано на рис. 3. В ре­зультате коэффициент концентрации значительно уве­личивается. На первый взгляд кажется, что в фокусе такого концентратора можно получить совершенно невероятную равновесную температуру, однако на практике этому препятствует непараллельность сол­нечных лучей. Если для плоского зеркального отражателя подобное об­стоятельство не имеет существенного значения, то в случае параболического концентратора оно ограничи­вает величину коэффициента концентрации. Вслед­ствие непараллельности лучей их энергия собирается не точно в фокусе (точке), а в некоторой области во­круг него. На рис. 3 показаны траектории лучей, исходящих от противоположных краев солнечного диска и попадающих в точки А и Б. Поэтому для получения максимального количества энергии облучаемое тело должно быть достаточно большим, чтобы принять все лучи, отраженные от концентрато­ра. Кроме того, с ухудшением оптических свойств зеркальной поверхности концентратора и с увеличением размеров приемника солнечной энергии уменьшается эффективное значение К, а, следователь­но, и равновесная температура,

При среднем качестве зеркал и использовании приемников, доста­точно полно воспринимающих отраженное излучение, К обычно не превышает 10000. Равновесная темпера­тура составляет для такого коллектора около 1930К (1660° С).

Кроме обычных плоских коллекторов и коллекторов с концентраторами существуют и другие конструкции солнечных коллекторов, например солнечный бассейн. В таком устройстве поглотителем служит непосредственно водный бассейн, который при необходимости можно оборудовать любым покрытием. Под воздействием солнечной радиации температура воды повышается как за счет непосредст­венного поглощения водой фотонов энергии, так и за счет теплообмена между поглощающим излучение днищем бассейна и водой. При нагревании вода рас­ширяется и нагретые более легкие слои поднимаются вверх. Было обна­ружено, что в некоторых природных водоемах самые нагретые слои воды оказываются скорее на дне, чем на поверхности. Как предполагают, это явление обу­словлено высоким содержанием соли в таких во­доемах и температура изменяется с глубиной бас­сейна так же, как и концентрация соли, которая у поверхности воды оказывается ниже, чем у дна. Ре­зультаты экспериментов показали, что равновесная температура в подобных бассейнах может достигать 100° С.

Процесс поглощения солнечной радиации осуществляется здесь отчасти в толще воды, а отчасти у дна бассейна. Он сопровождается сложным перераспределением энергии между различными сло­ями жидкости за счет теплопроводности и излучения. Вследствие этого характеристики излучения бассейна определяются его поглощающими свойствами. Для простоты можно считать, что такой бассейн подо­бен плоскому коллектору, поглотитель которого по своим свойствам занимает некоторое промежуточное положение между рассмотренными ранее нейтральным и селективным поглотителями.

Солнечные бассейны имеют ряд преимуществ перед коллекторами других типов. Это наиболее дешевые приемники больших количеств солнечной энергии; благодаря высокой теплоемкости воды они обладают широкими возможностями сохранения внутренней энергии, и, несмотря на различные тех­нические трудности, солнечные бассейны находят все большее применение.

В этой главе было рассказано о поглощении солнеч­ной радиации молекулами материальных тел, связан­ном с ним процессе изменения температуры изолиро­ванного тела, а также способах повышения равновесной температуры изолированного тела. В следующей главе будет рассказано о том, как реализуются на практике все эти явления и процессы.

Глава 2. Некоторые практические применения солнечных коллекторов

Отопление и горячее водоснабжение

И спользование солнечной энергии для отопления и горячего водоснабжения школ, фабрик, больниц, жилых домов и т.д. является одним из наиболее привлекательных способов ее при­менения. Системы горячего водоснабжения на основе плоского солнечного коллектора уже сейчас получили широкое распространение в Израиле и Японии, а на юге США и даже в Европе действуют довольно боль­шие экспериментальные установки для отопления домов и нагрева воды в плавательных бассейнах. Рис. 4 поможет понять принцип действия солнеч­ного водонагревателя. Находясь в контакте с погло­тителем коллектора, вода нагревается и при помощи насоса или естественной циркуляции отводится от него. Затем жидкость поступает в хранилище, откуда ее потребляют по мере надобности, или в теплообмен­ник, через который энергия передается теплоносителю.

Рис. 4. Простой солнечный водонагреватель с естественной циркуляцией.

В устройстве, изображенном на рис. 4, основным теплообменником является поглотитель. Жидкость здесь либо непосредственно омывает тыльную часть - пластины поглотителя, либо проходит через систему труб, являющихся по существу частью этой пластины. В воздухонагревательных коллекторах пластины поглотителей имеют множество отверстий, при прохожде­нии через которые воздух нагревается. В условиях хорошего теплообмена между окружающей средой и пластинами (это характерно для нагревания жид­кости) температуры поглотителя и жидкости одина­ковы. Поскольку жидкость нагревается при прохожде­нии через коллектор, очевидно, что на входе жидкости поглотитель холоднее, нежели на выходе. Перепад температуры зависит как от удельной теплоемкости жидкости, так и ее скорости.

Полезная мощность такого нагревателя зависит от мощности поступающего на него солнечного излучения, поэтому необходимо, прежде всего, выбрать наилучшую ориентацию коллектора. В принципе любой коллектор с помощью специального механизма можно было бы все время ориентировать на солнце, но это довольно дорогой способ. Поэтому в настоящее время используются неподвижные коллекторы, у которых меняется только угол наклона. Оптимальный угол наклона для наибольшего выхода энергии зависит от широты, например для средних широт составляет ≈50-650.

Практически все солнечные коллекторы указанной конструкции имеют близкие показатели, важные для оценки их теплотехнического совершенства.

В типичной СВУ солнечный коллектор считается ориентированным на юг. Угол наклона коллектора к горизонту выбирался близким по значению широте местности и округлялся в меньшую сторону до целого значения градусов, кратного 5, например, для Москвы с широтой около 560, угол наклона коллектора принимался равным 550. КПД большинства СВУ не превосходят 1%.

Помимо характеристик солнечного коллектора, другими важными показателями типичной СВУ являются ее расчетная производительность по нагреваемой воде (расчетный объем потребляемой нагретой воды в сутки Vсут), объем бака-аккумулятора Vак, режимные показатели (расход воды в контуре СВУ, график разбора воды к потребителю) и некоторые другие.
Типичная установка предусматривает суточную производительность Vсут = 100 л/сут. В соответствии с имеющимся опытом этого достаточно для обеспечения умеренных суточных бытовых потребностей 2–3 человек в теплой воде. Увеличение расчетного суточного потребления воды может быть удовлетворено путем пропорционального увеличения площади солнечных коллекторов и объема бака-аккумулятора (масштабный фактор). С помощью масштабного фактора полученные в данной работе для типичной СВУ результаты могут быть использованы для более крупных установок.
Площадь солнечных коллекторов. Для рассматриваемой СВУ – это параметр, изменяющийся в диапазоне 1–3 м2. Как правило, в характерных для большинства районов России климатических условиях для нагрева в сутки 100 л большей, чем 3 м2 площади солнечного коллектора не требуется и экономически не обосновано.

Режимные параметры. Для типичной СВУ предполагается, что расход воды через солнечный коллектор равен 50 л/(м2•ч). Он может быть обеспечен как с помощью циркуляционного насоса, так и в хорошо спроектированных установках за счет естественной циркуляции воды. Выбор данного (оптимального для СВУ) значения удельного расхода обусловлен следующими соображениями. Увеличение удельного расхода более 50 л/(м2•ч), не приводит к заметному увеличению КПД солнечного коллектора, но сопряжено с увеличением мощности и соответственно стоимости насоса или с необходимостью неоправданного подъема бака-аккумулятора над солнечным коллектором для обеспечения соответствующей интенсивности естественной циркуляции воды в контуре.

Опреснительные установки

Во многих богатых солнцем районах земного шара люди испытывают недостаток пресной воды. И неуди­вительно, что издавна солнечную энергию здесь ис­пользовали для получения питьевой воды из загряз­ненных или соленых источников. Для этой цели применяли разнообразные устройства различной сте­пени сложности. На рис. 5 показана одна из простей­ших систем подобного назначения. Предназначенная для очистки вода набирается в поддон, расположенный в нижней части устройства, где она нагревается за счет поглощения солнечной энергии. Поверхность под­дона обычно чернят, так как вода почти беспрепятственно пропускает коротковолновую часть солнечного излучения (иногда воду подкрашивают в черный цвет, и она становится поглотителем). С повышением температуры движение молекул воды становится бо­лее интенсивным и часть из них покидает поверхность воды. Насыщенный водяными парами воздушный поток поднимается вверх, охлаждается; соприкасаясь с поверхностью прозрачного покрытия, пары частично конденсируют­ся, а образовавшиеся капли стекают по ней вниз. Охлажденный воздух вновь опускается к поверхности воды, замыкая цикл конвективного движения.

Рис. 5. Простой солнечный опреснитель


Для повышения эффективности системы необхо­димо, чтобы при конденсации на поверхности покрытия образовывалась водная пленка, так как при конденса­ции воды в виде капель значительная часть падающей на поверхность покрытия солнечной радиации отражается ими; даже при сравнительно больших, углах наклона поверхности, когда вода довольно быстро стекает, примерно половина всей поверхности покрытия занята каплями воды. На тщательно очищенной от следов жира стеклянной поверхности обычно образуется пленка воды, тогда как почти на всех, даже более чистых пластмассовых поверхностях сконденсированная вода выпадает в виде капель. На некоторых новых пластических материалах возможна пленочная конденсация воды, но такие материалы вследствие высокой стоимости (приближающейся к стоимости стекла) для рассматриваемых целей непригодны.

Очевидно, что производительность такой солнечной опреснительной установки меняется в течение дня в соответствии с изменением интенсивности солнечной радиации Р. При очень мелком поддоне скорость получения питьевой воды в любой момент времени зависит только от величины Р. При глубоком поддоне температура воды устанавливается лишь через несколько дней, и в дальнейшем питьевую воду можно полу­чать непрерывно на протяжении суток. Для этого необходимо, чтобы количество воды в таком резер­вуаре во много раз превышало дневную производи­тельность установки, например 100 кг/м2 при глубине около 10 см.

Одним из недостатков подобного рода опреснительных установок является сезонное изменение их производительности. Предпринимались различные по­пытки преодолеть эту трудность. Например, была предложена установка, в которой вода испарялась с листа темного поглотителя, впитывавшего воду по­добно фитилю. Положение такого поглотителя можно регулировать; его можно наклонить так, чтобы интенсивность падающего излучения была максимальна и, как следствие этого, обеспечивалась максимальная производительность установки на протяжении года. Другим хорошо известным типом опреснителя является плавающая пластмассовая установка, включаемая в снаряжение летчиков и моряков многих государств.

Другие применения солнечного тепла

Характеристики

Тип файла
Документ
Размер
451,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее